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Sensitivity of Noisy Neurons to Coincident Inputs
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How do neurons compute? Two main theories compete: neurons could temporally integrate noisy inputs (rate-based theories) or they
could detect coincident input spikes (spike timing-based theories). Correlations at fine timescales have been observed in many areas of
the nervous system, but they might have a minor impact. To address this issue, we used a probabilistic approach to quantify the impact
of coincidences on neuronal response in the presence of fluctuating synaptic activity. We found that when excitation and inhibition are
balanced, as in the sensory cortex in vivo, synchrony in a very small proportion of inputs results in dramatic increases in output firing
rate. Our theory was experimentally validated with in vitro recordings of cortical neurons of mice. We conclude that not only are noisy
neurons well equipped to detect coincidences, but they are so sensitive to fine correlations that a rate-based description of neural
computation is unlikely to be accurate in general.

Introduction
What is the role of precise spike timing in neural computation?
This fundamental issue remains highly controversial. The tradi-
tional view postulates that neurons temporally integrate noisy
inputs, with precise spike timing playing little role in neural func-
tion (Adrian, 1934; Shadlen and Newsome, 1998; London et al.,
2010): the output firing rate is essentially determined by the input
firing rates. In the last decades, a number of authors have advo-
cated radically different views, in which the temporal coordina-
tion of spikes plays a central role (Singer, 1999; VanRullen et al.,
2005). A popular spike-timing theory proposes that neurons re-
spond to precisely coincident spikes (Abeles, 1991; Softky and
Koch, 1993; König et al., 1996; Kumar et al., 2010). This view is
supported by experimental observations of synchrony in various
areas of the nervous system (Usrey and Reid, 1999; Salinas and
Sejnowski, 2001). For example, in the retina and the thalamus,
neighboring cells are often synchronized at a fine timescale
(Alonso et al., 1996; Brivanlou et al., 1998; Usrey et al., 1998;
Meister and Berry, 1999); in olfaction, fine odor discrimination
relies on transient synchronization between specific neurons
(Stopfer et al., 1997).

However, the presence of synchrony does not by itself contra-
dict the view that neural computation can be mainly described in
terms of firing rates: it could be that synchrony is incidental and
has no significant impact on neural function, if neurons are not
very sensitive to it. Therefore, a crucial question to answer is whether
neurons are sensitive to coincidences in their inputs, and to what

extent. Independently of whether synchrony is functionally useful,
this sensitivity determines whether the input-output function of
neurons can be essentially described in terms of firing rates.

In a resting neuron, coincidence detection is a trivial property
due to the all-or-none nature of neural firing: two coincident post-
synaptic potentials (PSPs) superimpose and may reach spike thresh-
old, when two temporally distant PSPs would remain subthreshold.
In vivo, when the neuron is subjected to highly fluctuating synaptic
activity, coincidence detection is more difficult to quantify. In vivo
recordings in neurons of the visual cortex (Usrey et al., 2000) and
somatosensory cortex (Roy and Alloway, 2001) with simultaneous
recording of a pair of presynaptic neurons have shown that cortical
neurons are more likely to fire when the two presynaptic neurons fire
together rather than at distant times. However, it could be argued
that coincidence between input spikes may not be the cause of in-
creased firing but only correlates with it, since cortical neurons also
received inputs from many other cells. In addition, it is not straight-
forward to understand the implications of these observations when
thousands of synaptic inputs are considered.

Previous theoretical studies examined the role of input correla-
tions in neuron models, but with specific input scenarios (Salinas
and Sejnowski, 2000; Moreno et al., 2002; Rudolph and Destexhe,
2003b). Here we use a general probabilistic approach to understand
and quantify coincidence sensitivity, which allows us to predict the
impact of input coincidences on the output firing rate of a neuron, as
a function of the statistics of background activity.

Materials and Methods
Slice preparation and solutions
Mice of either sex of the CBA (n � 3) or the C57BL/6 (n � 5) strain aged
postnatal day 9 –15 were decapitated under sodium-pentobarbital anes-
thesia in conformity with the rules set by the European Commission
Council Directive (86/89/ECC) and approved by the local Swedish Ani-
mal Care and Use Committee (Permit N13/10). Transverse slices (250 –
300 �m) were collected when the corpus callosum (CC) joins the two
hemispheres and the hippocampus covers the underlying subcortical
structures (approximately at bregma �2.5 mm) using a vibratome
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(VT1200; Leica). Slices were incubated at 32°C
in normal aCSF (see below) for 20 –30 min,
after which they were allowed to cool to room
temperature. The cell-dense layer 2/3 region
100 –300 �m below the pia was targeted in the
primary auditory cortex, located �1.5 mm
dorsal to the rhinal fissure (Fig. 1). Recordings
were obtained within 4 –5 h of the preparation.

The low-sodium, high-sucrose aCSF con-
tained the following (in mM): 85 NaCl, 2.5 KCl,
1.25 NaH2PO4, 25 NaHCO3, 75 sucrose, 25
glucose, 0.5 CaCl2, 4 MgCl2, whereas the nor-
mal aCSF contained (in mM): 125 NaCl, 2.5
KCl, 1.25 NaH2PO4, 26 NaHCO3, 25 glucose, 2
CaCl2, and 1 MgCl2. These solutions were bub-
bled continuously with carbogen gas (95%
O2–5% CO2), generating a pH of 7.4.

The internal pipette solution contained the
following (in mM): 130 K-gluconate, 5 KCl, 10
HEPES, 1 EGTA, 2 Na2-ATP, 2 Mg-ATP, 0.3
Na3-GTP, 10 Na2-phosphocreatinine, adjusted
to pH 7.3 with KOH, and the osmolarity was
�290 mOsm. The recording solution also con-
tained Neurobiotin (0.1%) to be able to recon-
struct the recording site and the neuron
morphology using a standard immunohisto-
chemistry protocol with Streptavidin-Texas
Red (Vector Labs).

Recording procedures and data acquisition
Slices were transferred to a recording chamber
perfused (�3 ml min �1) with oxygenated
aCSF at room temperature (25 � 2°C). The putative A1 pyramidal cells
were viewed with an upright microscope (Zeiss Axioscope) using a 40�
water-immersion objective (Achroplan, Zeiss) and infrared-differential
interference optics equipped with a digital CCD camera (Orca 2,
Hamamatsu). Whole-cell current-clamp recordings were done with a
Multiclamp 700B amplifier (Molecular Devices) using borosilicate glass
microelectrodes with a final tip resistance of Rp � 5–10 M�. The signals
were filtered with a low-pass 4-pole Bessel filter at 10 kHz, sampled at 20
kHz and digitized using a Digidata 1422A interface (Molecular Devices).
Capacitance neutralization was not fully applied, as it was not necessary
for this study. The resting membrane potential of recorded cells varied be-
tween �75 mV and �63.5 mV (average �70 mV).

Electrode compensation
Because we injected highly fluctuating currents (Fig. 2a), the electrode
produced artifacts that could not be well corrected with standard bridge
compensation (Brette et al., 2008) (Fig. 2b): indeed, in addition to sim-
ulated synaptic noise, we injected large exponentially decaying EPSCs
(instantaneous rise), and therefore currents were discontinuous. In ad-
dition, recordings in the same cell were long (up to a few hours) and
electrode properties changed during the course of the experiment (typi-
cally, the series resistance increased; cell properties, on the other hand,
were stable): in the experiments on coincidence sensitivity in cortical
neurons (see Fig. 9b) (done after a couple of hours of recording in the
same cell), the series resistance was 70 –297 M� (median 120 M�—see
Table 1). Thus, even though membrane resistance is high in these cells
(several hundred M�), it was necessary to subtract the electrode re-
sponse. Therefore, we used an offline electrode compensation procedure
based on an electrode model. Traces are divided in 1 s slices, and we use
a generic model fitting toolbox (Rossant et al., 2011) to fit a linear model
of the neuron and electrode to the raw recorded trace:

Vmodel � Vn � Ve (1)

�m

dVn�t�

dt
� Vr � Vn�t� � RI�t� (2)

�e

dVe�t�

dt
� � Ve�t� � RsI�t� (3)

where �m and �e are the membrane and electrode time constants, R and Rs

are the membrane and series resistance, and Vr is resting potential. These

a

Rf

250µm
5x

-74 mV 100 ms

30
 m

V

50 pA
100µm 

20x

b c

Figure 1. Operational identification of a Neurobiotin-filled layer 2/3 cortical pyramidal cell. a, Reconstruction of the recording
site shows that based on the distance from the cortical surface (0.25 mm) and from the rhinal fissure (Rf; 1.3 mm), the neuron was
located in layer 2/3 of the primary auditory cortex. b, A large soma size (�20 �m) with a large apical dendrite extending toward
the cortical surface is compatible with pyramidal cell morphology. c, Whole-cell current-clamp recording of the response to
dehyperpolarizing and hyperpolarizing step currents of 500 ms duration injected from rest demonstrates a regular firing pattern,
which is typical for layer 2/3 pyramidal neurons at this age (Oswald and Reyes, 2008).
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Figure 2. Electrode compensation. a, A fluctuating current is injected (here, background
noise plus large PSCs). b, Raw recorded voltage trace. c, A linear model of the neuron and
electrode is fitted to the raw trace. Spikes are detected on the difference between raw recording
(b) and linear prediction (c). d, Electrode response with the fitted model. e, Compensated trace,
obtained by subtracting the electrode trace (d) from the raw trace (a).
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parameters are adjusted to minimize the L p error between the model
prediction Vmodel (Fig. 2c) and the raw trace Vraw, defined as:

ep � �� �Vmodel�t� � Vraw(t)�p�1/p

(4)

with p 	 2. Using an L p error rather than the more standard quadratic
error reduces the impact of outliers, such as spikes. We detect spikes on
the fully compensated trace, Vraw � Vmodel, which corresponds to what is
not predicted by the linear model, in particular spikes (Fig. 2d). We use a
manually selected threshold criterion (typically �20 mV) to identify
spikes. The compensated membrane potential of the cell, which we use
for subthreshold analyses, is Vraw � Ve (Fig. 2e).

The electrode compensation technique subtracts the voltage drop
through the electrode that is produced by the injected current. However,
it does not impact the filtering effect of the electrode, due to the non-zero

response time (time constant �e). For this reason, spike height (difference
between peak and spike threshold) varied systematically with the esti-
mated electrode time constant �e (for cells C1– 6: 64, 49, 33, 75, 79, and 57
mV; electrode time constant was 3 ms for C3 and 1.1 ms for C2, and 	1
ms for all other cells; spike duration varied in the opposite direction).

Synaptic currents and data analysis
Current A. To measure the probability that a noisy neuron fires in re-
sponse to a PSC of varying size (P(w); see Fig. 9), we inject a sum of a
background noise and exponentially decaying PSCs. The background
noise is an Ornstein-Uhlenbeck process (i.e., low-pass filtered white
noise) with time constant �N � 10 ms (different mean and SD values were
tested). After 9 s, we start injecting PSCs every 100 ms, with random size:
PSC(t) � �we �t/�s, where �s � 3 ms, � � 665 pA is a scaling factor (so
that maximum depolarization is �25 mV), and w is a random number
between 0.04 and 1. The total stimulation lasts �10 min.

Figure 3. Impact of fine input correlations on the firing rate of a cortical neuron. a, Synthetic synaptic currents from 5000 random excitatory (Ne � 4000) and inhibitory (Ni � 1000) inputs are
injected into the cell: the membrane potential is irregular but the cell does not fire. b, Inserting random synchrony events (at rate �c � 10 Hz) during which p randomly selected synapses are
coactivated increases the neuron’s firing rate, even though input rates are unchanged and the proportion of synchronous synapses is very low (0.4 and 0.6%). c, Injecting correlated spike trains with
homogeneous pairwise correlation c produces similar results: the output firing rate rising very steeply with input correlation. Spike trains were generated by thinning a common reference spike train
(Kuhn et al., 2003; Brette, 2009).

Table 1. Distance between mean membrane potential (Vm ) and spike threshold, SD of Vm , and maximum tested PSP in Fig. 9, where a filtered noisy current is injected in
the cells (mean � SD in the second column)

Cell Current statistics Threshold � mean Vm SD Max PSP Series resistance Rs (fit) Input resistance Ri (fit)

C1 50 � 30 pA 17 mV 5.7 mV 23 mV 70 M� 307 M�
C2 10 � 30 pA 21 mV 9.0 mV 30 mV 125 M� 539 M�
C2 10 � 10 pA 25 mV 3.1 mV 30 mV 126 M� 539 M�
C3 10 � 30 pA 25 mV 7.8 mV 27 mV 297 M� 568 M�
C4 10 � 30 pA 25 mV 5.6 mV 20 mV 85 M� 399 M�
C4 50 � 30 pA 16 mV 5.5 mV 20 mV 114 M� 197 M�
C5 50 � 30 pA 18 mV 4.0 mV 19 mV 213 M� 353 M�
C5 90 � 30 pA 13 mV 4.9 mV 19 mV 219 M� 255 M�
C6 70 � 30 pA 16 mV 1.5 mV 27 mV 78 M� 104 M�
C6 90 � 30 pA 13 mV 2.3 mV 27 mV 124 M� 93 M�

The values in column 2 are used for the theoretical predictions. The series resistance, Rs, and the cell’s input resistance, Ri (last column) were obtained with our model fitting technique, applied independently to each recording (see Materials
and Methods).
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To compute P(w), we divide the range of
values for w (0.04 –1) into 20 subintervals, and
in each subinterval i, we calculate the propor-
tion pi of trials in which the neuron spiked
within 30 ms of the injected PSC. The error bar
is the SD �i of this estimator: �i

2 � pi(1� pi)/
ni, where ni is the number of data points. Since
we are in fact interested in the extra firing prob-
ability due to the injected PSC, we subtract the
spontaneous firing probability pi

0, which is es-
timated from the same trace, but using spikes
produced in the 70 ms preceding each PSC. To
compare with theoretical predictions, we mea-
sure the spike threshold, the membrane poten-
tial distribution and the size of PSPs. The spike
threshold is estimated on each trace as the volt-
age at the maximum of the second derivative
of the voltage trace before spikes (Henze and
Buzsáki, 2001), and we use the median of all
threshold values. The mean and SD of the
membrane potential are measured in the first
9 s of the stimulation (which contains no PSC),
after removing spikes, and we assume a Gauss-
ian distribution. To measure the relationship
between PSC size and PSP size, we injected a
series of 10 identical EPSCs with peak � � 665
pA, and measured the average peak of PSPs.

Current B. To generate synaptic inputs with synchrony events (see Fig.
10), we first generate a set of Ne � 4000 (resp. Ni � 1000) independent
excitatory (resp. inhibitory) spike trains with Poisson statistics and rate
�e � 0.65 Hz (resp. �i � 1.3 Hz). Each spike triggers an exponentially
decaying PSC with time constant �e � 3 ms (resp. �i � 10 ms) and peak
value we � 13 pA (resp. wi � 5.7 pA). These values were chosen so that
EPSPs and IPSPs are ��1 mV high (close to the average excitatory PSP
size in the mouse auditory cortex in vitro; Oswald and Reyes, 2008).
Synchrony events are generated according to a Poisson process with rate
�c, and for each event we pick p excitatory synapses at random and make
them simultaneously fire. To compensate, a random spike is suppressed
for each new spike. For each cell, we test 4 values of p (5, 15, 25, 35) and
3 values of �c (5 Hz, 10 Hz, 20 Hz). The total stimulation lasts �14 min.
We calculate the firing rate r for each pair of values (p, �c), and the error
bar corresponds to the SD assuming Poisson statistics, that is, r/T, where
T is the duration of the block.

Current C. We also measure the firing rate of neurons in response to
spike trains with specified pairwise correlation c (Fig. 3c; see Fig. 13). The
current is the same as in the previous paragraph, except that correlations
are introduced differently (Kuhn et al., 2003; Brette, 2009): we generate a
single reference Poisson spike train with rate �/c, and for each target spike
train, we copy every spike of the reference spike train with probability c.
Correlations are only introduced in excitatory inputs. The stimulation
lasts �5 min, during which we successively test 11 values of c regularly
spaced between 0 and 0.01. The blocks are randomized, so that c does not
increase monotonously during the stimulation.

Neuron models
Models were simulated with the Brian simulator (Goodman and Brette,
2009). We used integrate-and-fire models, where the membrane poten-
tial V(t) is governed by the following equation:

�m

dV�t�

dt
� El � V�t� � I�t� (5)

where �m � 5 ms is the membrane time constant (taking into account the
increase conductance in vivo; Destexhe et al., 2003), El � �65 mV is the
resting potential and I(t) is the input (current times membrane resis-
tance). The neuron fires when V(t) reaches the threshold 	 � �55 mV,
and is then reset to El and clamped at this value for a refractory period of
5 ms. Despite their simplicity, such simple models can predict the spiking
responses of cortical neurons to time-varying currents injected at the

soma with surprising accuracy (Gerstner and Naud, 2009; Rossant et al.,
2011).

When calculating P(w) and coincidence sensitivity S (Figs. 4–7), a
voltage noise is added as an Ornstein-Uhlenbeck process with SD � and

Figure 4. Measuring coincidence sensitivity in noisy neurons (model traces). a, Two temporally distant input spikes are injected
on top of a noisy background (top), and may trigger output spikes. The poststimulus time histogram (PSTH, bottom), averaged over
many trials (10,000 here), shows the average extra number of output spikes due to the two additional input spikes, as the area
above the baseline (gray horizontal line). b, The same measurement can be done with two coincident input spikes. Coincidence
sensitivity is defined as the extra number of spikes due to coincidence, that is, the difference between the values obtained in a and
b (0.26 � 0.15 � 0.11 spikes in this case).

Figure 5. Coincidence sensitivity in a simple probabilistic model. a, When excitation and
inhibition are balanced, the membrane potential distribution peaks well below the threshold 	
(dashed line). If the neuron is depolarized by an amount w, it may fire an extra spike: the
expected number of extra spikes is the integral of this distribution between 	 � w and 	,
denoted P(w) (inset). The extra number of spikes for two noncoincident spikes is just twice this
value, 2 P(w) (blue area). The extra number of spikes for two coincident spikes is the integral of
the distribution between 	 � 2w and 	, P(2w). Coincidence sensitivity is the difference be-
tween these two areas: S � P(2w) � 2 P(w) (red). b, The same reasoning extends to the
analysis of the extra number of output spikes produced by p coincident spikes versus p nonco-
incident spikes (Sp). c, In a neuron model with background noise (�N �4 mV here), this analysis
underestimates the true extra number of spikes P(w) due to a depolarization of size w when
noise fluctuations are fast (�N is the time constant of background fluctuations; w � 3.8 mV
here). d, However, this error has the same magnitude for coincident spikes (P(2w)) and nonco-
incident spikes (2 P(w)), so that the difference S is reasonably accurate. This simple probabilistic
model predicts the coincidence sensitivity for PSPs of arbitrary shape, e.g., exponential (with
instantaneous currents, IC) or biexponential (with exponential currents, EC), where w is defined
as the maximum of the PSP.
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time constant �N. We estimate P(w), we calculate the probability that the
model fires within 10 ms of an injected PSC, minus the probability that it
fires spontaneously in the temporal window. PSCs are either instanta-
neous (dirac functions), giving exponential PSPs (time constant �m) or
exponential (with time constant �e � 3 ms for excitatory synapses and
�i � 10 ms for excitatory synapses), giving biexponential PSPs. The syn-
aptic weight w corresponds to the peak value of the PSPs.

In the simulations with correlated inputs (see Figs. 10, 13, 14), we
calculate the inhibitory weight to ensure that the mean total current is
zero, which is given by the balance equation:

Ne�e�EPSP(t) � Ni�i�IPSP(t) � 0 (6)

where �e and �i are the excitatory and inhibitory rates. These PSP inte-
grals can be analytically calculated.

In simulations with synaptic conductances instead of currents (see Fig.
12), the input current is:

I�t� � ge�t��Ee � V� � gi�t��Ei � V� (7)

where Ee � 0 mV and Ei � �75 mV are the excitatory and inhibitory
reversal potentials, and ge(t) and gi(t) are the excitatory and inhibitory
conductances (in units of the leak conductance). These are sums of ex-
ponentially decaying conductances, with the same time constants as be-
fore. The membrane time constant was �m � 20 ms. Background activity
consists of Ne � 4000 excitatory and Ni � 1000 inhibitory inputs at rate
�e � �i � 1 Hz (Poisson processes). We set the individual peak conduc-
tances so that the mean total excitatory conductance is �ge� � 0.5 (in units
of the leak conductance) and the mean total inhibitory conductance is �gi� �
3.25 (which ensures that the mean membrane potential is �65 mV).

Theory
The membrane potential distribution is denoted p(v) and the threshold
	. The probability that the voltage is above 	 � w is:

P�w� � �
	�w

	

p�v�dv (8)

The coincidence sensitivity is then S � P(2w) � 2 P(w) for two spikes,
and Sp� P(pw) � pP(w) for p spikes. We then assume a Gaussian distri-
bution for p(v) with SD � (this is not a requirement of the theory, but it
simplifies calculations), so that:

P�w� �
1

2� 1 � erf�	 � w

��2
�� (9)

where erf is the error function and the spike threshold 	 is relative to the
mean membrane potential.

To calculate the extra output rate due to synchrony events in the sparse
synchrony scenario (see Fig. 10a), we first calculate the mean and vari-
ance of the membrane potential using Campbell’s theorems, applied to
the nonsynchronous inputs:

� � �Ne�e � p�c��EPSP�t� � Ni�i�IPSP�t� (10)

�2 � �Ne�e � p�c��EPSP2�t� � Ni�i�IPSP2�t� (11)

Then the extra output rate is �cP(pw), where � and � are used in the
definition of P. These formulae are in fact only valid in the subthreshold
regime (for a nonspiking neuron), but the change induced by spikes is
small when the time constant (5 ms in our simulations) is small com-
pared with the typical interspike interval. More accurate expressions of
the membrane potential distribution exist for a limited number of cases
(Fourcaud and Brunel, 2002).

When synaptic inputs are modeled as conductances (see Fig. 12), we
calculate the membrane potential distribution and EPSP size using the
effective time constant approximation (Richardson and Gerstner, 2005),
that is, we define the average total conductance as gtot � 1 
 �ge� 
 �gi� (in
units of the leak conductance) and the effective time constant as �eff �
�m/gtot, and we use a linear approximation of the membrane equation
using these effective parameters:

�eff

dV�t�

dt
� El � V�t� �

1

gtot
�ge�t��Ee � V0� � gi�t��Ei � V0��

(12)

where V0 is the average membrane potential:

V0 �
EL � 	ge
Ee � 	gi
Ei

1 � 	ge
 � 	gi

(13)

With this approximation, which takes into account the change in effec-
tive time constant and resistance, we can use exactly the same analytical
methods as before (calculate the EPSPs analytically, and use Campbell’s
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Figure 6. Coincidence sensitivity in the mean-driven versus fluctuation-driven regime. a, b,
As in Figure 4, we calculate the average extra number of output spikes due to two additional
synchronous (b) or nonsynchronous (a) spikes. The definition is identical but here the neuron is
in a mean-driven regime, that is, the average drive exceeds threshold. c, In this regime, the
membrane potential distribution is increasing near threshold. As a result, coincidence sensitiv-
ity S (red contour) is negative, meaning the neuron fires less to coincident than to noncoincident
spikes. d, Coincidence sensitivity in a neuron model with background noise (with two different
SDs, � and w � 1 mV) as a function of the mean membrane potential, measured in the absence
of spikes. The neuron stops being sensitive to coincidences when the mean membrane potential
approaches threshold.
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theorems to calculate the membrane potential
distribution). It is possible to calculate the
membrane distribution more precisely with
more sophisticated methods (Rudolph and
Destexhe, 2003a; Richardson and Gerstner,
2006; Richardson and Swarbrick, 2010), but
this simple method was sufficient in our case.

Results
To motivate this study, Figure 3 shows the
sensitivity of a cortical neuron (layer 2/3
of primary auditory cortex, Fig. 1) to fine
correlations in its inputs. We injected a
fluctuating current in vitro composed of a
sum of 4000 excitatory and 1000 inhibi-
tory random spike trains (Fig. 3a, each
presynaptic spike triggers a postsynaptic
current), with Poisson statistics. Excita-
tion and inhibition were balanced on
average, as in the sensory cortex in vivo
(Destexhe et al., 2003), and this cell did
not fire when the inputs were uncorre-
lated (Fig. 3a). We introduced synchrony
events where p randomly selected presyn-
aptic excitatory spikes occurred at the
same time (Fig. 3b), without changing in-
dividual spike train statistics. The neuron
fired at 2 Hz when synchrony events in-
volved only p � 15 synapses, that is,
	0.4% of all synapses, and it fired at 5.5
Hz with p � 25. This exquisite sensitivity was also seen when
homogeneous pairwise correlations with smaller higher-order
correlations were introduced in the inputs (Fig. 3c): the cell fired
at 3 Hz with input correlation c � 0.002 (0.2%) and 6 Hz with c �
0.004. Thus, pairwise correlations that are so small that they
could probably not even be observed in a paired recording (a pair
of coincident spikes between two given presynaptic neurons oc-
curs every 150 s with c � 0.004 and firing rate F � 0.6 Hz) still
have a dramatic impact on postsynaptic firing rate. We ob-
served the same phenomenon in simple integrate-and-fire
neuron models, which suggests that it does not rely on specific
cellular mechanisms.

Coincidence sensitivity: a simple probabilistic model
How general is this property? To quantify coincidence sensitivity,
we compare the impact of two coincident versus two noncoinci-
dent spikes on a neuron with noisy background synaptic activity
(Fig. 4). If two input spikes are added on top of the background
activity, the neuron will fire more spikes on average. This average
extra number of spikes can be measured by repeating the same
protocol over many trials and computing the poststimulus time
histogram (PSTH): the extra number of spikes is the integral of
the PSTH above the baseline (Fig. 4a, yellow line). This corre-
sponds to the “spike efficacy” defined by Usrey et al. (2000). In
Figure 4, the neuron model fired on average 0.15 extra spikes in
response to two noncoincident spikes and 0.26 extra spikes in re-
sponse to two coincident spikes. Therefore, the average extra
number of spikes due to input coincidence was S � 0.26 � 0.15 �
0.11 spikes. We define this quantity as the coincidence sensitivity,
S: S � 0 means that the neuron fires more when its inputs are
coincident. It depends on neuronal and synaptic properties, and
on the statistics of background activity.

Coincidence sensitivity can be quantified with a simple prob-
abilistic approach (Fig. 5). When excitation and inhibition are

balanced on average, the membrane potential distribution peaks
well below threshold (Fig. 5a). The neuron fires in response to an
input spike if its membrane potential Vm is close enough to the
spike threshold 	. More precisely, if w is the size of the postsyn-
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Figure 7. Membrane potential distribution in in vivo intracellular recordings in various areas. From left to right and top to
bottom: barrel cortex (Crochet and Petersen, 2006), hippocampus (Harvey et al., 2009), primary auditory cortex (DeWeese and
Zador, 2006), primary visual cortex (Azouz and Gray, 1999), frontal cortex (Léger et al., 2005), primary motor cortex (Brecht et al.,
2004), nucleus accumbens (ventral striatum) (Goto and O’Donnell, 2001), neostriatum (Wilson and Kawaguchi, 1996), corticos-
triatal neurons (Stern et al., 1997).

Figure 8. Influence of background noise on coincidence sensitivity in a neuron model. a,
Coincidence sensitivity (color-coded) as a function of the SD � of the membrane potential and
the PSP size w, according to our theory (probabilistic model of Fig. 5) and measured in numerical
simulations. The threshold was 10 mV above the mean membrane potential and the time
constant of background fluctuations was �N � 15 ms. b, Coincidence sensitivity Sp for p coin-
cident versus noncoincident spikes, as a function of � and the total depolarization pw, for p �
10. c, Coincidence sensitivity Sp for �� 4 mV as a function of pw, when both p and w are varied
(gray area). The dashed line shows the theoretical prediction for many small PSPs S�.
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aptic potential (PSP), then the neuron fires if Vm 
 w � 	. Graph-
ically, the probability P(w) that the neuron fires (Fig. 5a, inset) is
then the integral of the membrane potential distribution between
	 and 	 � w. If two temporally distant spikes are received, the
probability that the neuron fires is just 2P(w), corresponding to
the orange area in Figure 5a. If two coincident spikes are received,
the probability that the neuron fires is P(2w), that is, the integral
of the membrane potential distribution between 	 and 	 � 2w.
Thus, the coincidence sensitivity is the difference between these
two probabilities: S � P(2w) � 2P(w), corresponding to the red
area in Figure 5a. This approach extends to the coincidence sen-
sitivity with p spikes Sp, defined as the difference in the average
extra number of spikes with p coincident versus noncoincident
input spikes (Fig. 3b).

This simplified description is not
entirely accurate, because an input spike
may bring the membrane potential
slightly below threshold, which would not
immediately trigger an output spike but
still increase the probability of firing at a
later time, because of background fluctu-
ations. Therefore, our description is an
approximation that is valid when the du-
ration of a PSP is short compared with the
time constant of background fluctuations,
and otherwise underestimates the true
probability P(w). This is shown in Figure
5c, where P(w) was numerically estimated
in a neuron model with background
noise, as a function of the time constant
�N of that noise (dashed line). The theo-
retical prediction with the probabilistic
model corresponds to the asymptotic
value for large �N. For fast fluctuations
(small �N), the true value of P(w) is signif-
icantly larger than our prediction. How-
ever, the error we make has the same
magnitude and sign for P(2w) (two coin-
cident spikes) and for 2P(w) (two nonco-
incident spikes), so that the coincidence
sensitivity S, which is the difference, is in
fact well approximated by our simple
probabilistic model (Fig. 5d).

Fluctuation-driven versus mean-driven
regime
In Figure 5, the neuron responds more to
coincident than to noncoincident spikes
(S � 0) because the membrane potential is
more likely to be near average than near
threshold, i.e., the membrane potential
distribution p(Vm) is decreasing. This re-
flects the fact that the neuron was in a
“fluctuation-driven” regime, because of the
balance between excitation and inhibition.
If the average synaptic current is suprath-
reshold (more excitation than inhibition),
then the situation is reversed (Fig. 6). In-
deed, in this case the neuron fires regularly
at a rate defined by the average current
(“mean-driven” regime) and spends more
time near threshold than far from it (Fig.
6a,b and membrane potential distribution

in Fig. 6c, see voltage traces). It follows that two coincident spikes
have a smaller impact on output firing than two noncoincident
spikes, that is, S 	 0 (Fig. 6c, area with red contour). Figure 6d shows
the measured coincidence sensitivity of a neuron model with back-
ground noise where the mean was varied, for two different noise
variances. Coincidence sensitivity is positive when the average mem-
brane potential (measured without threshold) is far below threshold,
and it changes sign when it approaches threshold (more precisely, S
is expected to change sign when the average membrane potential is
within 2 PSPs of the threshold—PSP size was 1 mV in this figure).
Thus, neurons are sensitive to coincidences in the fluctuation-driven
(or balanced) regime, not in the mean-driven regime.

Which one of these two situations is a better description of
membrane potential dynamics in vivo, fluctuation-driven or
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Figure 9. Coincidence sensitivity in cortical neurons. a, PSCs of various sizes are injected on top of a background noisy current,
and the probability of firing P(w) is measured as a function of measured PSP size w. b, Firing probability P(w) in 6 cells for different
noise statistics (numbers: mean � SD of background current). Measurements are compared with theoretical predictions with the
probabilistic model, using the measured threshold. Note that the horizontal scale differs between cells because they have different
membrane resistances (horizontal bar: 5 mV). Table 1 indicates the maximum PSP size, spike threshold and membrane potential
statistics for each cell. c, Coincidence sensitivity S � P(2w) � 2 P(w), measured and predicted, in the same cells. Note that the
horizontal scale is half the scale in b.
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mean-driven? In Figure 7, we show membrane potential distri-
butions in in vivo intracellular recordings in various areas, ex-
tracted from a number of previous studies. In anesthetized
preparations, these distributions are often bimodal, which re-
flects “up” and “down” states (Constantinople and Bruno, 2011).
Since down states are quiescent, only the depolarized mode (up
state) is relevant to this study. In all cases, the membrane poten-
tial distribution decreases toward threshold, suggesting that neu-
rons are in a fluctuation-driven rather than mean-driven regime.
Therefore, we now focus on the fluctuation-driven regime.

Influence of background noise statistics
Quantitatively, coincidence sensitivity depends on PSP size and
background noise statistics (e.g., mean and variance of the mem-
brane potential). In our probabilistic model, S increases mono-
tonically with PSP size w (Fig. 8a, left), until 2w is the difference
between average membrane potential and threshold (10 mV in
Fig. 8a), which corresponds to the inflection point of the sigmoid
P(w) (Fig. 5a, inset). The relationship with the SD � of the mem-
brane potential is more surprising: it appears that S is maximal
for an intermediate value of �, for example �2 mV when w  5
mV. Intuitively, it can be explained as a trade-off: if there is little
background noise (small �), then two spikes are unlikely to make
the neuron fire, whether they are coincident or not, and therefore
S is small; if there is too much noise (large �), then the membrane
potential distribution is flat (all voltages are equally likely) and
two coincident spikes have the same effect as two noncoincident
spikes. These theoretical predictions accurately matched numer-
ical results obtained in neuron models with simulated input cur-
rents (Fig. 8a, right).

It could be argued that 5 mV is unreasonably large for a PSP.
However, the same analysis applies when considering p small
PSPs instead of 2 large PSPs (Fig. 8b, p � 10 and w is varied
between 0 and 1 mV): 10 coincident PSPs of 1 mV produce on

average 0.5 more output spikes than if they were not coincident.
In fact, when the number of input spikes p is large, the coinci-
dence sensitivity Sp is mainly determined by the total depolariza-
tion pw, because small isolated PSPs have little effect on output
firing (Fig. 5b: the orange area is small). Figure 8c shows the
relationship between Sp and pw for different values of p (between
10 and 30) and with w varying between 0 and 10 mV/p (shaded
blue), in a simulated neuron model. The dashed line shows the
theoretical prediction with p � � (i.e., many small PSPs).

Coincidence sensitivity in vitro
We then verified our theoretical predictions in auditory cortical
neurons in vitro (Fig. 9). We generated background noisy cur-
rents with specified mean and SD, and injected them into the
soma with additional exponentially decaying currents of various
sizes, representing EPSCs, PSCs (Fig. 9a) (we address the more
realistic case of synaptic conductances below). We recorded the
spikes produced by the cell in response to this stimulation and
calculated the probability P(w) that the cell fires as a function of
PSP size w (Fig. 9b). To compare with our theoretical predictions,
we measured the membrane potential distribution in the cell and
the spike threshold (see Materials and Methods). Our simple
probabilistic model could predict P(w) with good accuracy over
the tested range of background statistics (Fig. 9b). The theoretical
prediction tends to slightly underestimate P(w), as we already
discussed previously (Fig. 5). From the measured P(w), we could
calculate the coincidence sensitivity S � P(2w) � 2P(w), which
was also well predicted by our theory (Fig. 9c). Consistently with
our theoretical analysis, all cells (n � 6) were very sensitive to
coincidences.

Impact of sparse synchrony events on output firing
To understand the impact of this property when many synaptic
inputs are considered, we analyzed the sparse synchrony scenario
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Figure 10. Impact of sparse synchrony on the firing rate of neurons. a, Firing rate (color-coded) of a neuron model in response to random input spike trains with rates 1 Hz with synchrony events,
as described in Figure 3b. Events occur at rate �c and consists of p synchronous spikes (out of 4000 excitatory synapses). Excitatory and inhibitory PSPs are 0.5 mV and �2 mV high, respectively (so
that the mean current is zero). b, Firing rate of the same model in response to random (uncorrelated) spike trains where the input rate of p inputs are changed to �c. c, Firing rate of 4 cortical cells
with the same inputs as in a, as a function of number p of synchronous synapses in each event, for 3 different synchrony event rates (PSP size was 0.4 – 0.6 mV and threshold 15–25 mV above the
mean membrane potential). Note that cell 5 had a lower membrane resistance than other cells.
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presented in Figure 3b with our theoretical approach (Fig. 10a).
In that scenario, the neuron receives 4000 excitatory and 1000
inhibitory spike trains with Poisson statistics. Excitation and in-
hibition are balanced (mean total current is zero), so that the
neuron fires irregularly at low rate (3 Hz). Synchrony events are
introduced at random times (also with Poisson statistics), by
shifting p random excitatory spikes to the event time. This pro-
tocol leaves individual spike train statistics unchanged but mod-
ifies the correlations. We can use our probabilistic model to
predict the extra firing rate due to these synchrony events (see
Materials and Methods) (Fig. 10a, left), and the prediction agrees
very well with numerical simulations (Fig. 10a, right). The impact
of synchrony on output firing rate is dramatic: by introducing
synchrony between 	1% of all synapses without changing the
input firing rates, the output firing rate increases from 2 Hz to 28
Hz in Figure 10a. On the other hand, if we increase the firing rate
of p excitatory inputs without changing the correlations while
maintaining the excitatory-inhibitory balance (by increasing the
inhibitory rate), then the output firing rate hardly changes (Fig.
10b). This is not so surprising since the total rate of excitatory
input spikes is hardly modified when the rates of only 1% of
synapses are increased and therefore the variance of the mem-
brane potential changes very little (precisely, the relative change
is 1 
 (p�c)/(Ne�e), where �c is the rate of the p inputs, �e is the

initial excitatory rate and Ne is the num-
ber of excitatory inputs).

We then tested the impact of sparse
synchrony in cortical cells, by injecting
synthesized currents made of sums of ex-
citatory and inhibitory PSCs with syn-
chrony events (Fig. 10c). In all tested cells
(n � 4), we observed that inserting syn-
chrony events without changing input
rates had a dramatic impact on the cell’s
firing rate, with only a few synapses in-
volved in each synchrony event (	1% in
all cases). Firing rates tended to be lower
than in model simulations (Fig. 10a) be-
cause the spike threshold was high in these
cells (�30 mV above resting potential),
and perhaps because of adaptive prop-
erties, which were not included in the
models.

Effect of temporal jitter and synaptic
unreliability
In our analysis, we compared precisely co-
incident spikes with temporally distant
spikes. How does coincidence detection
depend on the delay between input spikes,
that is, on the temporal precision of coin-
cidences? Consider a sum of coincident
PSPs, and introduce a temporal jitter in
spike times (Fig. 11a): the peak voltage de-
creases with the amount of jitter �j (de-
fined as the SD of spike times). It is
possible to calculate the average peak volt-
age as a function of �j (Fig. 11b): it de-
creases with a characteristic time close to
the decay time constant of PSPs, that is,
close to the membrane time constant �m

(dashed line). In our theoretical model,
coincidence sensitivity is determined by

the peak size of combined PSPs, therefore we expect neurons to
be sensitive to coincidences when the temporal jitter is smaller
than �m. This is confirmed by numerical simulations (Fig. 11c):
coincidence sensitivity Sp quickly increases with the number of
input spikes when �j 	 �m (left; �m � 5 ms here), and introducing
a 3 ms temporal jitter does not significantly change the impact of
sparsely synchronous inputs on output firing rate (Fig. 11, right).

An additional source of variability in vivo is the probabilistic
nature of synaptic transmission: presynaptic spikes are transmit-
ted with some probability � 	 1. However, it does not degrade
the temporal precision of coincidences, and therefore this fact
does not qualitatively impact coincidence sensitivity (Fig. 11d).
For example, when synapses transmit spikes with probability 0.5,
sparse synchrony still has a dramatic impact on output firing rate
(left). For a synchrony event consisting of p presynaptic spikes,
on average �p synchronous spikes are seen on the postsynaptic
side, and therefore the output firing rate is essentially deter-
mined by the effective number of synchronous synapses �p,
with little dependence on transmission probability � (Fig. 11d,
right). Therefore, the impact of stochastic synaptic transmis-
sion on coincidence detection is simply to increase the number
of synchronous presynaptic spikes for a given postsynaptic
effect by a factor 1/�.

Figure 11. Effect of spike jitter and synaptic failure on coincidence sensitivity. a, When random jitter is introduced in input spikes, the
sum of coincident PSPs has a smaller maximum, which is determined (on average) by the amount of jitter. b, This maximum (numerically
calculated for many coincident biexponential PSPs) decreases with the SD of the jitter, reaching 50% of its maximum value when the jitter
is comparable to the membrane time constant. c, As a result, neuron models are sensitive to coincidences when the jitter is smaller than the
membrane time constant, not when it is larger (left; �N � 15 ms, �N � 4 mV, w � 0.5 mV). For a jitter of 3 ms and a membrane time
constant �m � 5 ms, the effect of sparse synchrony on output firing rate is qualitatively similar to the effect obtained with zero-lag
synchrony (0 ms jitter, Fig. 10). d, If synapses transmit presynaptic spikes with probability �� 50% (i.e., failure probability is 50%), the
effect of sparse synchrony is still qualitatively unchanged. e, In this case, the impact on output firing rate is essentially determined by the
effective number of synchronous synapses in each event, seen from the postsynaptic side, which is on average �p (vertical axis), and does
not depend otherwise on synaptic transmission probability � (horizontal axis).
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Effect of synaptic conductances
In all the results we have shown, the syn-
aptic inputs were modeled as currents
rather than conductances. Considering
the more realistic case of synaptic conduc-
tances has two main consequences: 1) the
total conductance is increased (by a factor
of �5; Destexhe et al., 2003) and therefore
EPSP size is decreased by the same
amount, 2) the effective membrane time
constant is reduced in the same propor-
tion. In our models, we considered a short
membrane time constant (�5 ms) to take
this effect into account. For the problem
we are considering, the sensitivity to ex-
citatory coincidences, this is likely to be
sufficient. First, the excitatory reversal po-
tential is high compared with the spike
threshold (typically Ee  0 mV), and
therefore the driving force is not very vari-
able. Second, our measurements of coin-
cidence sensitivity only involve a few
input spikes (2 in Fig. 5a, a few tens in Fig.
10), and therefore these additional spikes
should have virtually no effect on the total
conductance (always 	1%).

To demonstrate this point, we mea-
sured the coincidence sensitivity of a neu-
ron model with a background of random
excitatory and inhibitory input spikes
(Fig. 12a), with the same statistics as in
Figure 10 (with no correlations), except
the inputs were modeled as synaptic conductances: the excitatory
(resp. inhibitory) current is Ie(t) � ge(t)(Ee � V) (resp. Ii(t) �
gi(t)(Ei � V)), where Ee � 0 mV (resp. Ei � �75 mV) is the
excitatory (resp. inhibitory) reversal potential. The mean excit-
atory conductance was half the leak conductance, while the mean
inhibitory conductance was 3.25 times the leak conductance.
Thus, the total conductance was �5 times the leak conductance,
so that the effective membrane time constant was �5 times
smaller than the membrane time constant (�eff � �m/(1 
 0.5 

3.25)). We then measured the coincidence sensitivity by injecting
excitatory input spikes with variable amplitude, as in Figure 9
(again, the inputs were modeled as conductances) (Fig. 12b). We
made theoretical predictions with the same formulae as before,
but we used the effective time constant and resistance to (approx-
imately) calculate the membrane distribution and EPSP size. In
this effective time constant approximation, the driving forces are
replaced by their average (Ee � V0 and Ei � V0) and the leak
conductance is replaced by the mean total conductance (Richard-
son and Gerstner, 2005). We then used exactly the same methods
as before. It is possible to calculate the membrane distribution
more precisely (Richardson and Gerstner, 2006; Richardson and
Swarbrick, 2010), but this simple current-based method was al-
ready accurate enough in our case. Figure 12b shows that our
theoretical prediction remains reasonably accurate in this com-
plex situation, which is far from the ideal setting (synaptic con-
ductances rather than currents, shot noise rather than diffusion).

Impact of input correlations without synchrony events
One may argue that the sparse synchrony scenario we described
in Figure 10 is rather specific in that we introduce strong depo-
larizations, which also increases higher order correlations (al-

though this is consistent with intracellular recordings in the
auditory cortex in vivo; DeWeese and Zador, 2006). However, the
results still hold if correlations are introduced in a way that min-
imizes these higher orders, as in Figure 3c: a fixed pairwise corre-
lation c is introduced between all excitatory spike trains with
firing rate r, by copying every spike from a common reference
spike train with rate r/c to any given target spike train with prob-
ability c (Kuhn et al., 2003; Brette, 2009). Introducing very small
correlations (	1%) in this way also has a dramatic impact on the
output firing rate of cortical cells (Fig. 13a,b—note the very small
scale of the horizontal axis). The same phenomenon is seen in
neuron models (Fig. 13c, left). These correlations are so small that
they could probably not be seen in a paired recording: indeed, a
correlation of 1% between two spike trains with rate 1 Hz results
in one coincidence every 100 s on average.

This surprising sensitivity can be explained by the remark that
the variance of the total synaptic input increases with input cor-
relation, but a small pairwise correlation is still significant if there
are many input pairs (approximately N 2 for N synapses). More
precisely, in a fluctuation-driven regime, the output rate critically
depends on the input variance because the mean synaptic input is
(by definition) below threshold. Suppose the total input consists
of N synaptic currents: X � �Ik, and these currents have variance
� 2 and pairwise correlation c (c � covar(Ik,Ij)/� 2). If these cur-
rents were uncorrelated (c � 0), then the input variance would
simply be N� 2. When they are correlated, the input variance is
the sum of the covariances all pairs of currents: var(X) �
�covar(Ik,Ij). A simple calculation gives: var(X) � N� 2 

cN(N � 1)� 2. Thus, because there are N(N � 1) pairs of currents,
the variance of the total input X is mainly determined by the input
correlations, unless c is negligible compared with 1/N (which is
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Figure 12. Coincidence sensitivity with synaptic conductances. a, The neuron model receives a background of excitatory and
inhibitory spike trains (same statistics as in Fig. 10), plus additional excitatory spikes with variable amplitude (as shown in Fig. 9a).
The inputs are modeled as conductances rather than currents [i.e., the synaptic current depends on the driving force Ee � V
(excitatory) or Ei � V (inhibitory)]. Because of the increase in total conductance, the effective membrane time constant was �5
times smaller than the membrane time constant (4 ms vs 20 ms). b, Results from numerical simulations are compared with
theoretical predictions using the effective membrane time constant, for the extra firing probability (left, as in Fig. 9b) and for the
coincidence sensitivity (right, as in Fig. 9c), as a function of calculated EPSP size.
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already very small). This is shown in Figure 13c (right), where the
SD of the total current increases very quickly with correlation
(note that the largest correlation considered is c � 1%). Thus,
very small pairwise correlations produce strong effects simply
because there are many pairs, as was previously observed at net-
work level in the retina (Schneidman et al., 2006).

Transmission of correlations
Precise coincidences increase the firing rate of a postsynaptic
neuron, but is precise spike timing preserved in the operation?
Figure 14a shows a model example where the postsynaptic neu-
ron fires at 2 Hz when the inputs are uncorrelated, and 8 Hz when
synchrony is introduced (p � 10). Additional spikes caused by
synchrony events are precisely time-locked to them, with each
event triggering on average 0.16 extra spike (Fig. 14b). Therefore
if several neurons receive independent inputs except for common
synchrony events (involving 0.25% of synapses), then their firing
is strongly correlated at a fine timescale (Fig. 14c). These correla-
tions may then impact target postsynaptic neurons.

In Figure 14, output correlation is an order of magnitude
larger than spike input correlation (between any two input spike

trains), that is, spike correlation increases in the process. This
may seem to contradict recent studies showing that the output
correlation of a pair of neurons is always smaller than input cor-
relation (de la Rocha et al., 2007; Shea-Brown et al., 2008), but it
should be stressed that these studies compare the spike output
correlation (correlation between two output spike trains) with
the correlation between the two total synaptic currents. Total
current correlation is essentially the sum of pairwise correlations
(for all pairs of synaptic spike trains) and is therefore one order of
magnitude larger (Renart et al., 2010; Rosenbaum et al., 2011).
We illustrate this point in Figure 15, where we simulated two
neurons with correlated input spike trains, with pairwise corre-
lation c (Fig. 15a). The correlation between the two total inputs
(ccurrent) is an order of magnitude larger than the spike input
correlation c (Fig. 15a, inset). This is a simple effect of pooling
(Rosenbaum et al., 2011): the covariance between the two total
inputs is the sum of the covariances of all pairs of synaptic cur-
rents, that is, cN 2� 2, and therefore the correlation is ccurrent �
cN/(1 
 c(N � 1)). For a large number of synapses N, this is close
to 1, unless correlations are very small. As a result, the spike
output correlation is much larger than the spike input correlation
(Fig. 15b), even though it is smaller than the total current input
correlation (Fig. 15c), in agreement with previous studies. In fact,
the amplification of correlations is so strong that network stabil-
ity requires that inhibition be correlated with excitation (Renart
et al., 2010).

Discussion
Sensitivity to fine correlations
Our results show that neurons are highly sensitive to input cor-
relations in the balanced (or fluctuation-driven) regime, when
their timescale is smaller than the integration time constant. The
required number of synchronous inputs for a strong effect is
�p  10 –20 (assuming PSP sizes �1 mV, close to the average
excitatory PSP size in the mouse auditory cortex in vitro (Oswald
and Reyes, 2008); more generally: p � (threshold � average Vm)/
PSP size). To have an idea of how strong this requirement is, let us
consider the average number of excitatory input spikes within an
integration window of 5 ms: with N excitatory inputs at rate F, we
obtain F � N � 5 ms. In Figure 10, for example (F � 1 Hz and
N � 4000), we obtain on average 20 spikes in one integration
window. Therefore, a relatively small excursion above this aver-
age number has a very strong impact on postsynaptic firing.
These results are consistent with recent findings that a small
number (20 – 40) of synchronous thalamic inputs can reliably
drive cortical neurons (Bruno and Sakmann, 2006; Wang et al.,
2010). In the latter study, authors found that spike efficacy was
maximal for �p � 30 synchronous inputs (that is, the ratio
P(pw)/p, called reliability per synchrony magnitude, is maximal
for p � 30). Using parameter values from that study, our theo-
retical formula predicts a very similar value, p � 27.

In this study, we defined the coincidence sensitivity as the
difference in the average number of postsynaptic spikes (spike
efficacy described by Usrey et al., 2000) produced by two syn-
chronous input spikes versus two asynchronous spikes. Similar
ideas were introduced by Abeles, who defined the “coincidence
advantage” as the number of asynchronous spikes required to
produce 0.5 average extra spike, divided by the number of syn-
chronous spikes required to produce the same number of spikes
(Abeles, 1982, 1991). The coincidence advantage corresponds to
the ratio between the total colored area (blue 
 red) and the blue
area in Figure 5b, that is, P(pw)/(pP(w)), where p is the number of
synchronous EPSPs required to produce 0.5 extra spike on aver-

Figure 13. Impact of homogeneously correlated inputs on a cortical neuron. a, A total of
4000 excitatory input spike trains with fixed pairwise correlation c are generated by thinning a
common reference spike train (left), and injected into a cortical neuron with 1000 uncorrelated
inhibitory spike trains (voltage response on the right). b, Output firing rate of 4 cortical neurons
as a function of the correlation coefficient c. c, The same correlated inputs are injected into an
integrate-and-fire neuron model (R � 350 M�, �m � 20 ms, El ��70 mV, 	 ��45 mV).
Left, Output firing rate as a function of c. Right, Mean and SD of the total input current as a
function of c.
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age (in our terms, this is approximately
p � (	 � �)/w). Indeed, each asynchro-
nous spike produces a postsynaptic spike
with probability P(w), and therefore 0.5/
P(w) asynchronous spikes produce on av-
erage 0.5 postsynaptic spike. Thus the
coincidence advantage is 0.5/(pP(w)) �
P(pw)/(pP(w)) (colored area divided by
blue area in Fig. 5b), for this particular
value of p. This definition is related to the
coincidence sensitivity Sp for p spikes (Fig.
8c), which is Sp � P(pw) � pP(w), except
our definition is a difference while the co-
incidence advantage is a ratio. As we pre-
viously explained, it turned out that
theoretical predictions worked better with
a difference than with a ratio, because the
errors in the estimation of P(2w) and
2P(w) appear to approximately cancel
(Fig. 5c).

In a recent theoretical study, it was found
that a precise arrangement of excitation and
inhibition could result in partial cancella-
tion of correlations in a network, that is,
pairwise correlations scale as 1/N as the
network size increases (Renart et al.,
2010). In the light of our results, it should
be stressed that this does not mean that
correlations become negligible, in the
sense that correlations of order 1/N still
modulate the output rate (correlations
should be small compared with 1/N, e.g.,
1/N 2, to be negligible). Indeed, the linear
decrease in correlation is compensated
by a linear increase in the number of
synaptic inputs. From this point of view,
describing the resulting network state as
“asynchronous” may be misleading.

Fluctuation-driven versus mean-driven
The main condition for neurons to be sensitive to coinci-
dences is that the average input current is subthreshold, that
is, that neurons are in a “fluctuation-driven” regime, as op-
posed to the “mean-driven” regime, where neurons fire regu-
larly at a rate determined mainly by the mean current. This
happens in particular when excitation balances inhibition on
average, which occurs in vivo in the high-conductance regime
induced by intense synaptic activity (Destexhe et al., 2003).
Another signature of fluctuation-driven regimes is the tempo-
ral irregularity of spike trains. Recently, it was found that
neurons in sensory cortices fire irregularly, while neurons in
the motor cortex fire more regularly, but at a variable rate
(Shinomoto et al., 2009). This would suggest that neurons in
the sensory but not in the motor cortex are sensitive to coin-
cidences. However, spike train regularity may also indicate
strong oscillatory activity rather than a mean-driven regime,
and therefore we cannot draw a firm conclusion from this
observation. In vivo intracellular recordings in many areas
(Fig. 8), including the primary motor cortex (Brecht et al.,
2004), all indicate that the membrane potential distribution
decreases toward spike threshold, which supports the notion
that neurons are generally in a fluctuation-driven regime.

Spike-timing versus rate in noisy neurons
Our results support the view that synchrony plays an important
role in neural computation. A central point in the debate between
spike-timing and rate-based theories of neural computation is
whether background activity should be treated as “noise” or “sig-
nal” (Stein et al., 2005; London et al., 2010)—that is, intertrial
variability could reflect differences in network state rather than
intrinsic noise. While our approach is agnostic about this point,
our results show that, even if background activity reflects intrin-
sic or irreducible noise (e.g., chaos) (London et al., 2010), neu-
rons are still extremely sensitive to the relative spike timing of
their inputs. In other words, the presence of high voltage fluctu-
ations implies that computation and coding are stochastic, but
not that they are based on rate only. On the contrary, the fact that
even very tiny correlations (of order 1/N) have tremendous post-
synaptic impact suggests that neural computation is generally not
satisfactorily described in terms of rates—whether synchrony is
functionally useful or not.
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