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Parallel  computing  is  now  an  essential  paradigm  for  high  performance  scientific  computing.  Most  existing
hardware and software  solutions  are  expensive  or  difficult  to use.  We  developed  Playdoh,  a Python
library  for distributing  computations  across  the free  computing  units  available  in  a  small  network  of
multicore  computers.  Playdoh  supports  independent  and  loosely  coupled  parallel  problems  such  as  global
optimisations,  Monte  Carlo  simulations  and  numerical  integration  of  partial  differential  equations.  It  is
eywords:
ython
arallel computing
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ptimisation

designed  to  be lightweight  and  easy  to use and  should  be of interest  to scientists  wanting  to  turn  their
lab  computers  into  a small  cluster  at no  cost.

© 2011  Elsevier  B.V.  All  rights  reserved.
igh performance computing

. Introduction

In many areas of scientific research there is an increasing need
or high-performance computing (HPC) [1,14], witnessed by a large
rowth in publications relating to parallel or distributed algorithms
or scientific computations (for example [4,24]). Until recently, HPC
or scientific research has been restricted to a small number of
reas and institutions with the required technological expertise
nd funding to exploit it. Recent trends in parallel and distributed
omputing are changing this picture, and now HPC is, in prin-
iple, accessible to almost all scientists thanks to several factors
ncluding: lower hardware costs; the ubiquity of relatively large
umbers of powerful desktop computers in scientific labs; innova-
ions such as general purpose graphics processing units (GPUs) [23]
hich provide parallel processing performance at a fraction of the

ost of traditional clusters, and which are increasingly being used
or scientific computations [15,20]; and on-demand cloud com-
uting services [29] such as Amazon EC2,1 Google App Engine,2
nd PiCloud.3 Although the resources are now widely available,
he growth of scientific HPC is limited by the technical difficul-
ies of using them. Traditional solutions adapted to the needs of

∗ Corresponding author at: Ecole Normale Supérieure, Equipe Audition, DEC, 29
ue d’Ulm, 75005 Paris, France.

E-mail address: cyrille.rossant@ens.fr (C. Rossant).
1 http://aws.amazon.com/ec2/.
2 http://code.google.com/appengine/.
3 http://www.picloud.com/.

877-7503/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jocs.2011.06.002
the early users of scientific HPC (well-funded and with substan-
tial technical expertise) are highly efficient, but are very difficult
to use and can be expensive. In order to lower the technical bar-
rier to entry of scientific HPC, and hopefully thereby spur the
advances in science that should accompany universal access to
HPC, there needs to be substantial improvements in the acces-
sibility of software solutions so that scientists without expertise
in parallel computing can make use of the resources at their dis-
posal.

In this paper, we present Playdoh,4 a Python package offer-
ing a simple and small-scale grid computing solution to scientists.
It allows for easy access to an abundant supply of existing
parallel computing resources: the desktop computers already
sitting on every desk in a scientific lab. Modern computers typ-
ically come with multiple processor cores (two, four or even
six cores are already common), and GPU cards. A small lab of,
for example, five researchers, each with a desktop computer
equipped with a four core processor and a GPU card, already
has access to formidable HPC resources which in most cases
are left unused. Typically, computations in such a lab would

make use of only one CPU core on only one of these machines,
1/20th of the resources available to them with CPUs alone and

4 http://code.google.com/p/playdoh/.

dx.doi.org/10.1016/j.jocs.2011.06.002
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Fig. 1. Small-scale grid computing with Playdoh. Playdoh allows the user to turn a
set of interconnected computers into a small cluster. The CPUs (and GPUs if avail-
able) of the computers are shared with the other users, who  can use these idle
resources for their own computations. Each user can specify at any time the number
C. Rossant et al. / Journal of Com

ossibly 1/250th of the resources once GPUs are taken into
ccount.5

Playdoh is a lightweight package written in Python, an increas-
ngly popular platform for scientific computing [22]. It has no
ependencies except the widespread scientific library NumPy6

aking it easy to install and portable across most platforms.
laydoh presents a very simple and intuitive interface to the
ser, making it trivial to implement independent parallel (or
embarrassingly parallel”) problems with a couple of lines of
ode, and straightforward to implement more sophisticated par-
llel computing tasks (loosely coupled problems, defined below).
n addition, it features a global optimisation package focused on

aximising fitness functions which are computationally expen-
ive and do not have gradients. This sort of problem arises
ery frequently in scientific computation and can greatly ben-
fit from parallel computing. Playdoh also supports distributing
asks written in CUDA7 across GPUs on one or several comput-
rs.

There are many existing Python packages for parallel comput-
ng. In addition to including a package for distributed optimisation,
laydoh differs from them by offering a solution tailored to sci-
ntific computation in a lab with a small number of networked
omputers. It was originally designed for use in our lab, in particu-
ar for global optimisation problems applied to neural modelling
26,27]. The limitation of the majority of existing packages to
mbarrassingly parallel problems was too restrictive for our needs,
ut on the other hand packages which went beyond this, includ-

ng IPython, were based on the MPI  framework, which seemed
xcessively complicated. In fact, IPython only uses MPI  for coupled
roblems, for independent parallel problems it can be used with-
ut MPI. This related work is discussed in more detail in Section
. In addition, we wanted a package that allowed for dynamic
llocation of resources so that each member of our group could
lways be guaranteed at least as many computational resources
s were available on their machine, and that most of the time
here would additionally be a pool of resources available on other

achines.
In the next sections, we present how Playdoh can be used to exe-

ute independent parallel tasks and optimisations. We  also show
ow more sophisticated parallel problems can be implemented
y giving simple code examples of a Monte Carlo simulation
nd a partial differential equation numerical solver. We  then
riefly present the implementation of the core features of Play-
oh. Finally, we give some performance results, and discuss the
dvantages and disadvantages of other existing parallel computa-
ion libraries.

. Features

Playdoh allows for the distribution of computations across a
ool of multicore computers connected inside a standard, for exam-
le, Ethernet based network (Fig. 1).

This kind of architecture is very common in scientific labora-
ories and is well adapted to independent and loosely coupled
arallel problems. Many computational tasks encountered in scien-
ific research can be distributed in this way. The easiest and perhaps

ost common situation where a scientist could benefit from par-

llelism is when executing a set of independent jobs, for example
hen exploring a model in the parameter space. Playdoh, like many

ther libraries (see Section 5), provides a playdoh.map function

5 Comparison based on 43 GFLOPS reported for the Intel i7 920 at 2.66 GHz, and
800 GFLOPS reported for the NVIDIA GeForce GTX 295.
6 http://numpy.scipy.org/.
7 http://www.nvidia.com/object/cuda home new.html.
of resources on their own computer to be allocated to the cloud, with the remainder
being kept for their own usage.

which is syntactically similar to the built-in Python map function
and allows for the distribution of independent jobs across CPUs on
one or more computers. In addition, Playdoh handles more sophis-
ticated cases of parallel computations where the subtasks are not
absolutely independent but require infrequent low-bandwith com-
munication [5]. Such problems are said to be loosely coupled. This
category includes all problems that are spatially subdivided with
only local interactions. Those problems can be distributed using
domain decomposition techniques, where only the subdomains
boundaries need to be exchanged. Frequent high-bandwidth com-
munication between subtasks would not be efficient in the type of
network architecture Playdoh is designed for, because data trans-
fer becomes a major performance bottleneck. Many widespread
types of computations can be distributed as such loosely coupled
parallel problems: Monte-Carlo simulations, optimisations, cellular
automata, numerical solving of partial differential equations (PDE),
etc.

Playdoh currently comes with a built-in global optimisation
toolbox which contains several algorithms including the Particle
Swarm Optimisation algorithm (PSO) [12,28], a Genetic Algorithm
(GA) [7,16] and the Covariance Matrix Adaptive Evolution Strat-
egy algorithm (CMA-ES) [11,19]. The toolbox provides minimize
and maximize functions to rapidly optimise a Python function in
parallel. These global optimisation algorithms are best adapted to
those with computationally intensive fitness functions for which
the gradient is not available or does not exist.

For other sorts of problems, Playdoh offers a simple pro-
gramming interface for implementing computations that can be
distributed as loosely coupled parallel problems. In this section,
we show with simple examples how all those problems can be
implemented with Playdoh.

2.1. Independent parallel problems

The typical use case of the playdoh.map function is the parallel

execution of a computational model with different parameters. In
the following example, we show how to execute the two  trivial
operations 1 + 2 and 3 + 4 in parallel on two  CPUs.

http://numpy.scipy.org/
http://www.nvidia.com/object/cuda_home_new.html


3 putat

d

i

p

2

t
c
(
r
c
t
d

t

d

i

r

p

w
t

s
f
o
c
A
c

i
n
c
t
t

2

o
f
i
a
o
n
i
s

2

c
g
p
r
w
t
i
t
o
a
f
m

54 C. Rossant et al. / Journal of Com

ef sum(x, y):

return x +y

mport playdoh

rint playdoh.map(sum, x=[1, 3], y=[2, 4], cpu=2)

.2. Parallel optimisation

Global optimisation tasks are very common scientific compu-
ational problems. Here, we focus on situations where the major
omputational part of the optimisation is the evaluation of the
real-valued) fitness function rather than the optimisation algo-
ithm itself. This scenario typically occurs when optimising a
omplex model with respect to some of its parameters, where
he fitness depends upon the parameters in a potentially non-
ifferentiable or even non-continuous way.

The following example shows how to minimize the square func-
ion f(x) = x2 in parallel on two CPUs.

ef square(x):

return x ** 2

mport playdoh

esult = playdoh.minimize(square, x=[-10, 10], cpu=2)

rint result

The x keyword argument here specifies the initial interval over
hich the particles should be uniformly sampled. Boundary condi-

ions on the parameters can also be set here.
All the optimisation algorithms included in Playdoh consist of

uccessive iterations of two steps. In the evaluation step, the fitness
unction is evaluated against a large number of parameters (points,
r particles, in the parameter space). In the update step, the parti-
les’ positions evolve according to the optimisation algorithm rules.
fter a sufficient number of iterations, the particles are expected to
onverge towards the minimising or maximising position.

The evaluation step is independently parallel and can be eas-
ly distributed across different computing units (or nodes): each
ode evaluates the fitness function against a subset of the parti-
les. Parallelising the update step involves the nodes exchanging
he minimum information needed so that they all converge towards
he same position.

.2.1. Master–worker model in the PSO algorithm
In the PSO algorithm, the particles evolve towards a mixture

f the global best position found so far and the local best position
ound so far by each particle. Therefore, distributing the algorithm
mplies the communication of the global best position to every node
t each iteration. This can be done using the master–worker model:
ne chosen unit (the master) is responsible for finding and commu-
icating the best position to every other unit (the workers) at each

teration (Fig. 2A). This implies minimal data transfer since only a
ingle particle position needs to be communicated.

.2.2. Island model in the GA
In the GA, at every iteration, some particles (or individuals) are

hosen based on their fitness and their parameters are crossed to
enerate a given percentage of the total population. Some other
articles will mutate, i.e. some of their variables will be randomly
esampled, and a small proportion of the best particle, the elite,
ill remain unchanged. The population is expected to converge

owards the best position. This algorithm is distributed using the
sland model [30]: every unit (island) has its own population of par-
icles which evolves independently from the others. Every few tens

f iterations, the best particles of any island migrate to the next in

 ring topology (Fig. 2B). This has been shown to improve the per-
ormance of the optimisation. Only a small fraction of individuals

igrate, and so data transfer is limited.
ional Science 4 (2013) 352–359

The optimisation toolbox is extensible in that new optimisation
algorithms can be implemented using the parallel programming
interface proposed by Playdoh. This interface can also be used to
implement any other parallel computation, as shown in the next
paragraph.

2.3. Loosely coupled parallel problems

Computational tasks that cannot be distributed using the
independent parallel interface of Playdoh typically require some
communication between subtasks and the introduction of synchro-
nisation points. Playdoh offers a simple programming interface
to let the user implement their computation by focusing on
the parallelism logic for their specific task, without having to
deal with the details of low-level inter-process communica-
tion. This programming interface is presented in the next two
examples.

2.3.1. Parallel Monte Carlo simulation
In the first example we  evaluate � using a classical Monte Carlo

simulation (a very commonly used type of computation). We  pro-
ceed by sampling random points in a square and counting the
number of points inside the unit circle. If En is a set of n points
uniformly sampled in E = [0, 1]2 and D = {(x, y) ∈ E|x2 + y2 ≤ 1}, then
�MC = 4 × |{En ∩ D}|/n is an estimation of �.

For a Monte Carlo simulation such as this, it is straightfor-
ward to independently parallelise it: every node samples its own
set of points and computes its own  estimate. At the end, the
estimations are combined to yield a more precise estimate. Data
transfer happens only at the end of the task and is very limited
in this example since only the count of points inside the unit cir-
cle is communicated. In fact, in this case the task would be best
approached using playdoh.map,  but we  use it here to demon-
strate the Playdoh programming interface. To implement this task,
two stages are required. First, the task itself must be written: it
is a Python class which actually performs the computation. Every
computing unit stores and executes its own instance. Then, the
task launcher executes on the client and launches the task on the
CPUs on the local machine or on several machines across the net-
work.

import numpy, playdoh

class PiMonteCarlo(playdoh.ParallelTask):

def initialize(self, n):

self.n = n � number of points on this node

def start(self):

� Draws n points uniformly in [0, 1] ∧ 2
samples = numpy.random.rand(2, self.n)

�  Number of points inside the quarter unit circle

self.count = numpy.sum(samples[0,:] ** 2 +samples[1,:]

**  2 <= 1)

def get result(self):

return self.count

Launching the task is done by calling the Playdoh function

start task. Here, we  launch the task on two CPUs on the local
machine. The start task function triggers the instantiation of the
class on every node, the call to the initialize method with the
arguments given in the args keyword argument, and finally the
call to the start method.

points = [50000, 50000] � number of points per unit

�  <args >contains the arguments of <initialize>for every node
task = playdoh.start task(PiMonteCarlo, cpu=2, args=(points,))

�  Calls get result on every node

result = task.get result()

�  Prints the estimation of Pi

print sum(result) * 4.0 / 100000
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Fig. 2. Two  parallel models for distributed optimisation. A. Schematic illustration of the master–worker model used for the PSO algorithm. The workers keep their own set
of  particles which evolve according to the PSO rules. At every iteration, the workers send their local best particles to the master. Then, the master selects the best particle
among  those local best particles: this is the global best particle. The master finally sends this global best particle back to the workers. This model allows all nodes to know
at  each iteration the global best particle across all nodes. B. Schematic illustration of the island model used for the Genetic Algorithm. Every node (or island) keeps its own
population, which evolves according to the GA rules. Every few iterations, the best individuals on each node migrate to the next node in a ring topology, and reproduce with
the  local population.
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.3.2. Parallel numerical solution of partial differential equations
Numerical solvers for partial differential equations (PDEs) are

patially subdivided and only have local interactions, which makes
hem good candidates for parallel computing in Playdoh. In this
xample, we show how to parallelize a numerical solver of the
eat equation on a square with Dirichlet conditions using the
nite difference method. If S = [− 1, 1]2, we write the equations
s:

∀t ∈ R+, ∀(x, y) ∈ S,
∂u

∂t
(t; x, y) = �u(t; x, y)

∀t ∈ R+, ∀(x, y) ∈ ∂S, u(t; x, y) = 0
∀(x, y) ∈ S, u(0; x, y) = f (x, y)

This equation is numerically solved by discretising time and
pace using an Euler scheme (finite difference method) [18].
o parallelize this problem, we use a classic spatial domain
ecomposition technique [6,17]. We  divide the square grid into
verlapping vertical bands: each node solves the equation on

 band. At every iteration, the nodes need to communicate
nformation about the boundaries of the bands to their neigh-
ors (see Fig. 3). The overlap is required to keep consistency
etween the subtasks. The size of the data transfer is only O(

√
n)

er iteration, where n is the total number of points in the

rid.

Communication between nodes happens through tubes, which
re one-way named FIFO queues between two nodes. The source
uts any Python object in the tube with a push, and the target
ets objects in the tube with a (blocking) pop. This allows a sim-
le implementation of synchronisation barriers. The following code
xample shows the most relevant part of the task implementa-
ion: the computation involves iterative calls to send boundaries,
ecv boundaries, and update matrix.
def send boundaries(self):

if 'left' in self.tubes out:

self.push('left', self.X[:, 1])

if  'right' in self.tubes out:

self.push('right', self.X[:, -2])

def recv boundaries(self):

if 'right' in self.tubes in:

self.X[:, 0] = self.pop('right')

if 'left' in self.tubes in:

self.X[:, -1] = self.pop('left')

def update matrix(self):

Xleft, Xright = self.X[1:-1,:-2], self.X[1:-1, 2:]

Xtop, Xbottom = self.X[:-2, 1:-1], self.X[2:, 1:-1]

self.X[1:-1, 1:-1] += self.dt * (Xleft +Xright +Xtop +Xbottom \
-  4 * self.X[1:-1, 1:-1]) / self.dx ** 2

The most relevant part in the task launcher is the defini-
tion of the topology (here, a double linear topology) as a list of
tubes.

topology = [('right', 0, 1), ('left', 1, 0),. . .]}

The k nodes are uniquely identified with indices between 0
and k − 1 and are mapped transparently at runtime to actual CPUs
according to the available resources in the network.

2.4. Resource allocation

Resources (CPUs and GPUs) are shared with other computers on
the network by running the Playdoh server with the open server
function. The server runs in the background and the computer can
continue to be used by its operator, who can choose how many
resources to reserve and how many to share. Resource allocation
is done with a cross-platform graphical user interface included in
Playdoh. When running a task on remote machines, the number of

resources to use on every machine is calculated automatically at
the beginning of the task (static allocation).

Resources include CPUs and GPUs: the latter can only be used
if the CUDA code is provided along with the PyCUDA [13] code
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Fig. 3. Parallel numerical solving of a PDE. This figure illustrates the parallel imple-
mentation of the PDE numerical solver example. The goal is to solve the heat
equation inside a square with Dirichlet boundary conditions and with a centered
Dirac initial function (top panel). The solution is expected to be a centered Gaussian
function with increasing variance. The client decomposes the domain into verti-
cal  overlapping bands (top panel) and sends the decomposed initial function on
these bands to the nodes. Each node solves the equation by computing a numer-
ical approximation of the Laplacian on that band before using the forward Euler
scheme. Computing the Laplacian requires the knowledge of the function on the
boundaries, which are processed by the neighboring nodes. This is why  the nodes
s
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end their boundaries to their neighbors (middle panel) at every iteration. At the
nd,  the client retrieves the function values on every band and recombines them to
btain the final function values on the whole domain (bottom panel).

o launch it. In this case, several GPUs on a single machine or on
ifferent machines can be used in parallel.

. Methods

Playdoh is coded in pure Python and uses only native Python
odules except for NumPy which is a very standard library in
he scientific community. The latest stable version (Playdoh 0.3.1)
ontains about 10,000 lines of code: about 20% are dedicated to
nter-process communication, 15% to code transport, 15% to dis-
ributed computing, 30% to optimization, and the remaining 20%
ional Science 4 (2013) 352–359

are related to the user-exposed functions, scripts and command-
line tools.

3.1. Inter-process communication

The core component of Playdoh is a standalone and lightweight
inter-process communication (IPC) module which lets processes on
a single computer (possibly running on different processors) or on
different interconnected machines to exchange information. This
module, on which the other modules in Playdoh are based, imple-
ments a lightweight Remote Procedure Call (RPC) protocol: Python
functions can be transparently called on a machine and executed
on another one. A simple and transparent authentication procedure
is implemented in this layer to ensure security of the communi-
cations. Each message is authenticated with a shared key using
a hash-based message authentication code (HMAC). This module
uses the native multiprocessing, threading and cPickle mod-
ules: computers communicate by serialising Python objects and
sending them over TCP. Different CPUs are used through different
processes rather than different threads: this is a known limitation
due to the global interpreter lock (GIL) of CPython [2].

3.2. Shared memory

Nodes running on different computers need to have indepen-
dent copies of data in memory, but nodes running on different CPUs
on a same computer may  have access to shared memory. With Play-
doh, it is possible to store some NumPy arrays in shared memory.
This can be more efficient than having in memory as many copies
of one array as processes, especially with very large NumPy arrays.
However, such shared arrays need to be read-only in order to avoid
contention issues when several processes try to make changes to
the same data at the same time.

3.3. Code transport

Running a task on different computers requires the task’s code
to be sent to every computer. This is done in Playdoh with a code
serialization technique: the code of the function or the class imple-
menting the task is automatically retrieved along with any Python
modules which it depends on. The code is sent to the remote com-
puters which can then execute the task.

4. Results

4.1. Independent parallel tasks

Performance tests were conducted to compare the speed
improvement of distributing independent tasks using Playdoh with
the maximal improvement expected from ideal parallelization. The
tasks consist of a pause or a neural network simulation performed
with the Brian simulator [8,9], each one consisting of a typical net-
work of 4000 neurons with 2% connectivity (the standard current
based, or CUBA, network from [3]) for a simulation duration of 2 s.
The pauses show the scaling for a perfectly homogeneous network
where the computation takes the same time on each CPU. In Fig. 4A,
it can be seen that scaling is very good in this case, improving sub-
stantially as the length of the pause increases (corresponding to
a more complex computation) relative to the inter-machine com-
munication time. The scaling with the neural network simulation
shows that in a more realistic situation where the computation time
is different for different CPUs (because of heterogeneous comput-
ers), the scaling is not quite so close to ideal because the total time

is controlled by the time for the slowest CPU. However, even in this
case the scaling is still good, and the addition of load balancing to
Playdoh (planned for a future release, see Section 6) would bring it
closer to parity with the performance for the pauses.
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Fig. 4. A. Speed improvements achieved when distributing independent jobs across several CPUs and computers compared to a single CPU. 48 jobs consisting of a pause (+:
5  s; ×: 1 s) or a neural network simulation (◦: 6.3 ± 0.5 s across computers) are distributed on one to four computers with one to four CPUs each. The speed improvements are
calculated by comparing with the total duration obtained by running all jobs in sequence on a single CPU. B. Speed improvement achieved when distributing an optimisation
of  a fitness function with a variable pause (x-axis), which corresponds to the duration of each iteration. Dashed line: GA, dotted line: PSO, solid line: single CPU. C. Convergence
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.2. Optimisation performance

To illustrate the use of the optimisation algorithms, two widely
sed functions are implemented. The first one, the Rosenbrock
unction, has a global minimum inside a long, narrow, parabolic
haped flat valley and no local minima. Whereas it is trivial to
nd the valley, converging to the global minimum is difficult. The

unction is defined as follows:

 (x) =
n−1∑

i=1

[
(1 − xi)

2 + 100(xi+1 − x2
i )2]

here n is the number of dimensions (we choose n = 5 here). The
earch domain is set to −2.2 ≤ xi ≤ 2.2, i = 1, 2, . . .,  n and its global
inimum f(x*) = 0 is at x∗

i
= 1, i = 1, 2, . . .,  n. The second function

sed is the Schwefel function which has several local minima close
o the global minimum. It is defined as

 (x) = 418.9829n +
n∑

i=1

(−xi sin(
√

| xi |)

he search domain is set to −500 ≤ xi ≤ 500, i = 1, 2, . . .,  n and its
lobal minima f(x*) = 0, which is close to the boundaries, is located
t x∗

i
= −420.9687, i = 1, 2, . . .,  n.

For the Rosenbrock function the performance of the PSO algo-
ithm is compared to that of the CMA-ES. In this example the
umber of particles is 80, the number of iterations 150 and the num-

er of workers is 2. As can be seen in Fig. 4D, the CMA-ES algorithm
onverges much more rapidly to the solution than the PSO. For the
chwefel, a GA on a single worker, i.e. without any islands, and a GA
ith 4 workers, i.e. with 4 islands, are implemented. In this example
e GA with 4 islands (solid line). The y-axis represents the best fitness obtained up
rison on the Rosenbrock function between the PSO (dashed line) and the CMA-ES

the number of particles is 1000 per worker and the number of iter-
ations is 2000. The results, which are shown in Fig. 4C, illustrate the
fact that the island topology of the GA, which allows different popu-
lations to grow independently, prevent the algorithm from getting
stuck in local minima. This escape from a local minima to the global
one introduces a jump in the fitness convergence, as can be seen
for the GA with islands but not for the one without islands. There-
fore, as well as speeding up the computation, distributing certain
optimisation algorithms can improve their convergence properties.

Secondly, we  want to study the overhead due to the par-
allelization against the complexity of the fitness. If we  assume
that the time to compute the fitness of a population scales lin-
early with its size, the computation time spent for one iteration
is �particles/� workers * tfitness + tcommunication + tupdate. When tfitness,
the time needed to compute the fitness of one particle, is very small,
the communication time will be bigger than the time gained by
parallelization. If tfitness, and therefore its complexity, is very high,
there will be a significant speed improvement with parallelization.
This can be seen in Fig. 4B where the case of one worker on one
machine (solid line) is compared with the one with 3 workers on
3 servers. In this example we  model the effects of fitness functions
of varying complexity by introducing a pause in the fitness eval-
uation for each particle, where the duration of the pause models
the complexity of the function. The results are different for the GA
(dashed line) and the PSO (dotted line) because the GA requires
much less communication (20 times less here, as the migration

from island to island is done every 20 iterations). In this case, the
ideal speed improvement of 3 times is achieved almost immedi-
ately while for the PSO the fitness computation needs to be more
complex to achieve the same improvement.
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. Related work

In this section we briefly review the existing Python packages for
arallel and distributed computing, and highlight how they differ
rom Playdoh.

The most commonly addressed problem is the independent
r “embarrassingly” parallel problem, and there are a number
f Python packages which allow the use of multiple CPUs on

 single computer or across multiple computers. Some of these
nclude sophisticated load balancing features which Playdoh cur-
ently lacks. These packages include Celery,8 Disco,9 Jug,10 PaPy,11

apyros,12 Parallel Python13 and superpy.14

There are also several packages which allow access to high per-
ormance low-level APIs for distributed computing, including the

essage Passing Interface (MPI) [10] and Parallel Virtual Machine
PVM). These include mpi4py,15 PyMPI,16 PyPar17 and pypvm.18

hese packages allow for extremely low latency and high band-
idth communication between processes where it is available, but

t the cost of being difficult to use (both to install and to write
rograms using them). To give an example, for the Monte Carlo
omputation of � shown in Section 2.3, with MPI  you would need
o write two scripts, a master script and a worker script. The worker
cript would need to be copied by hand to each of the worker
achines (although this could be done with ssh if a server was

nstalled on the worker machines). Using mpi4py, the master script
ould look something like:

rom mpi4py import MPI

mport numpy, sys

omm = MPI.COMM SELF.Spawn(sys.executable,

args=['cpi.py'],

maxprocs=5)

 = numpy.array(100, 'i')

omm.Bcast([N, MPI.INT], root=MPI.ROOT)

I = numpy.array(0.0, 'd')

omm.Reduce(None, [PI, MPI.DOUBLE],

op=MPI.SUM, root=MPI.ROOT)

rint(PI)

omm.Disconnect()

The worker script would look like:

rom mpi4py import MPI

mport numpy

omm = MPI.Comm.Get parent()

ize = comm.Get size()

ank = comm.Get rank()

 = numpy.array(0, dtype='i')

omm.Bcast([N, MPI.INT], root=0)

 = 1.0 / N; s = 0.0

or i in range(rank, N, size):

x  = h * (i +0.5)

s  += 4.0 / (1.0 +x**2)

I = numpy.array(s * h, dtype='d')

omm.Reduce([PI, MPI.DOUBLE], None,

op=MPI.SUM, root=0)

omm.Disconnect()
This approach undoubtedly allows for the best performance and
he maximum flexibility, however for the loosely coupled prob-

8 http://celeryproject.org/.
9 http://discoproject.org/.

10 http://luispedro.org/software/jug.
11 http://code.google.com/p/papy/.
12 http://code.google.com/p/papyros/.
13 http://www.parallelpython.com/.
14 http://code.google.com/p/superpy/.
15 http://mpi4py.scipy.org/.
16 http://pympi.sourceforge.net/.
17 http://code.google.com/p/pypar/.
18 http://pypvm.sourceforge.net/.
ional Science 4 (2013) 352–359

lems that Playdoh addresses (beyond the independent problems),
this level of performance is not necessary. In fact, Playdoh is able
to provide fairly high bandwidth (although it will usually be used
only in lab networks which are often not configured for the high-
est possible bandwidth), but cannot provide latencies as low as
MPI/PVM.

Deserving of special attention is IPython [25], an extremely
sophisticated shell for scientific computing with Python, NumPy
and SciPy. It includes support for parallel and distributed comput-
ing, and is used by many computational scientists working with
Python. Different ways of working are accommodated through
“controller interfaces”. At the moment it has two  interfaces: one
for exerting direct control of remote processes (e.g. execution
of commands on a remote computer) and one for load-balanced
independent task processing. For coupled problems, IPython
integrates with MPI. There is no direct support for loosely coupled
problems without resorting to MPI, however the architecture
of IPython allows for new controller interfaces to be written. It
is possible that Playdoh, or a simpler equivalent of it, could be
included in IPython in this way.

Another approach taken by several packages is distributed
namespaces. With this approach, objects are stored across mul-
tiple processes or machines, but a single namespace is available to
the user. If the user requests a variable from this namespace, it is
fetched from the process/machine that is storing it, and similarly for
changing the values of variables. Independent and loosely coupled
problems can be addressed within this framework, although there
is no direct support for them. Packages which use this approach
include NetWorkSpaces19 and Pyro.20

Finally, it is possible to use more generic packages to implement
different approaches, for example using the Python multiprocess-
ing package, low-level internet protocol packages, or a process
managing package such as execnet.21 This approach is the most
general, of course, but requires users to write substantial amounts
of code for basic operations.

What distinguishes Playdoh from the packages above is the
emphasis on the typical scientific lab environment, the loosely cou-
pled problem framework and the built in optimisation package.
In addition, it has very minimal prerequisites in comparison to
some of the packages above (notably IPython, which for the par-
allel interfaces requires several large Python packages, including
zope.interface, Twisted, Foolscap and pyOpenSSL).

With Playdoh, in a lab having several connected computers, each
member of the group can distribute their computational tasks over
the available nodes, keeping their own  resources for themselves or
allocating some resources for others to use, including the ability to
dynamically change resource allocations without restarting. This
peer approach differs from the master/slave architecture typical
to the packages listed above, which is better adapted to a cluster
environment (i.e. one in which there are many available machines
not being operated directly by a user).

6. Discussion

Development of Playdoh is ongoing. We  have several features
planned for inclusion in future releases of Playdoh which will
increase ease-of-use and allow for a more efficient distribution of
resources over the cloud. A simple form of load balancing will be

implemented so that resources are automatically split among com-
puters, and, in the case of independent parallel problems, can be
reallocated if the number of available CPUs or GPUs on a computer

19 http://www.lindaspaces.com/products/NWS overview.html.
20 http://irmen.home.xs4all.nl/pyro3/.
21 http://codespeak.net/execnet/.

http://celeryproject.org/
http://discoproject.org/
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hanges. Fault tolerance would allow one machine to die without
eopardizing the whole simulation thanks to redistribution and a
escheduling of the processes. We  may  also integrate Playdoh into
Python as an IPython controller, allowing the ease of use of Play-
oh’s framework for loosely coupled problems together with the
owerful features of IPython. Playdoh could also be used as a thin
xternal Python layer to parallelize existing serial code. A serial
omputational task is decomposed into Python functions that could
e wrapped up by Playdoh, providing an automatic parallelization
f the original program flow [21].

The Playdoh package is one solution to the problem of dis-
ributing computations, emphasizing a particular balance between
ase-of-use and functionality. Playdoh avoids many of the com-
lications of MPI  as we do not need the ultra-low latency and
igh bandwidth which it is designed for. Playdoh will therefore
e useful for scientists in labs with computational problems more
omplicated than embarrassingly parallel ones, but for whom MPI
s overkill, and who have an existing stock of user machines rather
han a dedicated cluster.
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