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Résumé en français 6
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Fiche de synthèse

Le contexte général

La rétine est un tissu nerveux au fond de l’œil des vertébrés, qui convertit le signal lumineux
en brèves impulsions électriques stéréotypées appelées potentiels d’action. Ces derniers sont
ensuite transmis au cerveau par l’intermédiaire du nerf optique. Le projet de recherche de
l’équipe dirigée par Michael Berry est de comprendre les processus algorithmiques implé-
mentés par la rétine qui permettent l’encodage de l’information visuelle. Pour cela, l’équipe
a développé une technique expérimentale permettant d’enregistrer l’activité électrique de la
rétine tout en projetant des images à sa surface.

Les travaux effectués jusqu’à présent sur la rétine ont montré que, bien qu’étant la toute
première étape de la vision biologique, des traitements complexes sur l’information visuelle y
sont effectués. De plus, une structure statistique complexe est présente dans les signaux de
sortie de la rétine, et porte probablement beaucoup d’information sur l’image. Comprendre
cette structure et son rôle est l’un des enjeux du projet de recherche.

Le problème étudié

Ce stage, réalisé en collaboration avec Kolia Sadeghi (doctorant dans l’équipe), a consisté à
appliquer la théorie des processus ponctuels à l’étude des propriétés statistiques des trains de
potentiels d’action des cellules de sortie de la rétine (cellules ganglionnaires). L’intérêt de
cette étude vient du fait que la structure statistique observée dans ces signaux (en particulier
les corrélations entre les cellules) a vraisemblablement un rôle important dans l’encodage de
l’information.

Ce problème a été beaucoup étudié au cours des dernières années. En particulier, des
outils issus de la physique statistique (modèle d’Ising par exemple) ont été appliqués avec
succès à l’étude statistique du code neural. Il a ainsi été montré que les corrélations des paires
de cellules capturaient une très grande partie de la structure statistique de ces signaux.

La théorie des processus ponctuels, qui est la formalisation mathématique des trains de
potentiels d’action, a quant à elle été encore peu utilisée. Les modèles développés jusqu’à
présent ne l’étaient que dans un cadre restreint (principalement des processus de renouvelle-
ment). Durant ce stage, nous avons proposé une autre manière d’appliquer cette théorie
au problème posé, qui permet d’exprimer de manière élégante une très grande variété de
modèles.

La contribution proposée

Au cours de stage, j’ai 1/ étudié un outil théorique pour définir et manipuler des modèles
multidimensionnels de processus ponctuels, 2/ élaboré et implémenté informatiquement un
outil statistique pour comparer les modèles aux données, 3/ trouvé un modèle intéressant à
l’aide de ces outils.

L’outil choisi pour manipuler des processus ponctuels est la fonction génératrice. À notre
connaissance, cet outil n’a encore jamais été utilisé pour de telles applications, malgré de
nombreux avantages. L’outil statistique utilisé pour l’inférence des modèles à partir des
données expérimentales n’est pas l’algorithme du maximum de vraisemblance pour des raisons
de limitations en puissance de calcul. Nous avons plutôt choisi une variante heuristique
appelée algorithme du maximum de pseudo-vraisemblance. Ce dernier se place dans un cadre
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discret, contrairement à la définition du modèle qui se déroule dans un cadre continu. Le
passage du continu au discret s’effectue simplement grâce aux fonctions génératrices. J’ai
implémenté cet algorithme en Matlab pour tester les modèles vis-à-vis des données. Les
outils ainsi développés sont tout à fait généraux et peuvent potentiellement admettre des
applications en dehors du cadre des neurosciences computationnelles.

Dans un second temps, nous avons défini à l’aide de ces outils un modèle particulier
de processus ponctuel multidimensionnel pour les trains de potentiels d’action des cellules
ganglionnaires de la rétine. Les données expérimentales que nous avions provenaient du
laboratoire. La démarche utilisée pour obtenir ce modèle a d’abord été de trouver, dans un
cadre discret, une distribution de probabilité intéressante pour les données. Nous l’avons
alors généralisée au cadre continu, puis améliorée pour obtenir de meilleurs résultats.

Les arguments en faveur de sa validité

Pour tester notre modèle, nous avons inféré ses paramètres à partir des données, à l’aide de
l’algorithme du maximum de pseudo-vraisemblance. Nous avons ensuite vérifié que différentes
quantités découlant du modèle étaient proches des valeurs expérimentales : distributions de
probabilité unidimensionnelles (marginales), covariances des paires de cellules... Les premiers
résultats obtenus montrent que pour une certaine partie des cellules, les marginales et les
covariances sont très bien capturées. Les résultats sont cependant un peu moins bons pour
les autres cellules. Une des raisons principales est que le modèle actuel ne capture pas les
corrélations négatives. Ce défaut devra être résolu après la fin de ce stage.

Il reste encore beaucoup à faire pour étudier l’influence de tous les paramètres du modèle
sur les résultats et pour améliorer le modèle. Il faudrait aussi confronter le modèle avec
d’autres données expérimentales. De plus, les résultats sont à considérer en tenant compte du
fait que le passage du continu au discret implique une perte d’information, et que l’algorithme
d’inférence n’est pas parfait. Améliorer cet outil statistique pourrait nous aider à obtenir des
résultats plus intéressants.

Le bilan et les perspectives

Le travail réalisé montre que la fonction génératrice, un outil simple, puissant et peu connu
dans le domaine, pouvait être appliqué avec succès à l’élaboration de modèles de proces-
sus ponctuels. D’autre part, nous avons pu trouver à l’aide de cette méthode un modèle
intéressant pour l’étude des propriétés statistiques des trains de potentiels d’action des cellules
ganglionnaires de la rétine. Ce travail constitue donc une première étape pour l’application
de cet outil au problème posé, et fournit une approche puissante et différente de celles déjà
explorées.

Il s’agit maintenant de s’aider de cet outil et du modèle trouvé pour tenter de comprendre
les implications computationnelles de la structure statistique du code neural de la rétine.
Autrement dit, ce modèle permet-il d’expliquer comment le corps genouillé latéral et le cortex
visuel utilisent les propriétés statistiques des signaux rétiniens pour en déduire des propriétés
sur l’image ?
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Résumé en français

Remarques sur ce rapport

Ce rapport est en anglais du fait que ce stage s’est déroulé aux États-Unis et que mon
directeur de stage est américain. De plus, le contenu utile de ce rapport (sans les annexes,
la page de garde et les divers compléments) dépasse légèrement la limite imposée. Cela vient
du fait que je me suis plus longuement attardé sur la présentation du contexte scientifique.
La raison de ce choix est que je souhaitais rendre compte non seulement de mon travail
sur le plan mathématique, mais aussi de ses motivations et de son intérêt en neurosciences
computationnelles. Il m’a donc semblé important d’en donner brièvement les fondations pour
faciliter le travail des lecteurs étrangers à ce domaine de recherche.

Dans ce résumé en français, le contexte est introduit très brièvement, et les travaux
précédents sont rapidement mentionnés. La suite de ce résumé contient l’essentiel de mon
travail sur les outils théoriques pour étudier les trains de potentiels d’action, et leur utilisation
dans la recherche d’un bon modèle pour des données provenant de la rétine.

Introduction

Le laboratoire

Ce stage s’est déroulé dans le département de biologie moléculaire à l’Université de Prince-
ton, aux États-Unis. J’étais intégré dans l’équipe de recherche dirigée par Michael Berry, un
physicien de formation qui s’intéresse aux neurosciences computationnelles, et plus partic-
ulièrement aux processus algorithmiques intervenant dans la rétine.

La rétine

La rétine est un tissu nerveux au fond de l’oeil des vertébrés, qui convertit le signal lumineux
(convergeant sur la surface de la rétine grâce au cristallin) en brèves impulsions électriques
stéréotypées (potentiels d’action, ou spikes). Ces potentiels d’action, considérés instantanés
dans le cadre de ce stage, sont ensuite transmis au cerveau par l’intermédiaire du nerf optique.
La rétine est donc la toute première étape de la vision biologique. Le reste du traitement de
l’information visuelle se fait dans le thalamus et surtout dans le cortex cérébral. Le projet
général de recherche du laboratoire est donc de comprendre les processus algorithmiques qui
sont implémentés par la rétine et qui permettent l’encodage de l’information visuelle.

Le protocole expérimental

Les chercheurs de l’équipe mènent des expériences qui consistent à projeter des images ou
des vidéos sur des rétines extraites de salamandres, tout en enregistrant l’activité électrique
simultanée de dizaines de cellules de sortie de la rétine (cellules ganglionnaires) à l’aide d’une
grille multi-électrodes. Un travail statistique et de modélisation s’appuyant sur les données
est alors conduit pour tenter de comprendre le fonctionnement de la rétine.

Statistiques des trains de potentiels d’action des cellules ganglionnaires

Les potentiels d’action émis par les cellules ganglionnaires présentent expérimentalement une
part d’aléatoire (bruit) : le cadre théorique d’étude est donc probabiliste. Il a été constaté
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que les signaux de sortie de la rétine présentent une structure statistique complexe, qui
joue vraisemblablement un rôle important dans l’encodage. Il a ainsi été montré que les
corrélations entre cellules sont essentielles dans le code neural. Le sujet particulier sur lequel
j’ai travaillé était donc l’élaboration de modèles statistiques des trains de potentiels d’action
des cellules ganglionnaires capturant autant que possible les corrélations entre cellules.

Contributions

Ce stage, réalisé en collaboration avec Kolia Sadeghi (doctorant dans l’équipe), a consisté
à appliquer la théorie des processus ponctuels à l’étude statistique des trains de potentiels
d’action des cellules ganglionnaires de la rétine. J’ai plus particulièrement 1/ étudié un outil
théorique pour définir et manipuler des modèles multidimensionnels de processus ponctuels,
2/ élaboré et implémenté informatiquement un outil statistique pour comparer les modèles
aux données, 3/ trouvé un modèle intéressant à l’aide de ces outils.

L’étude statistique des trains de potentiels d’action à l’aide de la
théorie des processus ponctuels

Processus ponctuels

Un processus ponctuel réel est une suite aléatoire croissante d’instants {ti} ∈ R. C’est la
formalisation mathématique des trains de potentiels d’action. Les travaux précédents util-
isant la théorie des processus ponctuels pour l’étude statistique du code neural utilisent
l’intensité conditionnelle et la distribution des intervalles inter-spikes. Les modèles utilisés
sont surtout des processus de renouvellement. L’inférence statistique utilise la méthode du
maximum de vraisemblance, puisqu’un modèle de processus ponctuel donné par son inten-
sité conditionnelle admet une expression analytique pour sa fonction de vraisemblance. La
qualité statistique (goodness-of-fit) d’un modèle est donnée visuellement par un graphique
de Kolmogorov-Smirnov, ou quantitativement par le coefficient d’Akaike. Un exemple de
modèle intéressant est celui qui admet une distribution gaussienne inverse comme distribu-
tion d’inter-spikes.

Intérêt d’une autre approche

L’inconvénient de cette approche est qu’elle ne permet d’exprimer principalement que des
processus de renouvellement. Ces processus ne forment qu’une classe restreinte de modèles,
et ne permettent pas de capturer efficacement les corrélations à travers le temps et les cellules.
Durant ce stage, nous avons utilisé une autre approche, permettant de définir des processus
ponctuels en utilisant la fonction génératrice. Cet outil permet de définir de manière simple
et naturelle une très grande variété de modèles. Nous n’avons pas connaissance de travaux
antérieurs appliquant cet outil a des questions de neurosciences.

Fonction génératrice d’un processus ponctuel

La fonction génératrice d’un processus ponctuel {ti} est définie par (h est une fonction
régulière R→ [ 0, 1 ], valant 1 en dehors d’un intervalle borné) :

G(h) = E

(∏
i

h(ti)

)
.
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C’est la généralisation “continue” de la fonction génératrice d’une distribution de prob-
abilité discrète. En effet, la fonction génératrice appliquée à une fonction h constante par
morceaux donne lieu à la fonction génératrice de la distribution discrète multidimensionnelle
du nombre de potentiels d’action dans les différents intervalles sur lesquels h est constante.
La fonction génératrice est intéressante pour des applications pratiques parce que des modèles
probabilistes complexes peuvent admettre des fonctions génératrices relativement simples. De
plus, il est facile d’obtenir des moments et de marginaliser à partir de la fonction génératrice.

Il est possible d’obtenir numériquement une approximation des ND premières valeurs
d’une distribution discrète de dimension D à partir de la fonction génératrice, à l’aide d’une
transformée discrète de Fourier. Cela est utile pour l’inférence des paramètres d’un modèle
de processus ponctuel défini par sa fonction génératrice.

Algorithme du maximum de pseudo-vraisemblance

Dans ce stage, l’élaboration d’un modèle s’est faite dans le cadre continu, à l’aide des fonctions
génératrices des processus ponctuels. En revanche, l’inférence et la confrontation aux données
s’est faite dans un cadre discret, en considérant les distributions de probabilité du nombre
de potentiels d’action dans des fenêtres temporelles fixées. Le passage du continu au discret
s’effectue très facilement à l’aide des fonctions génératrices (voir le paragraphe précédent).

Les distributions discrètes multidimensionnelles considérées sont donc le nombre de po-
tentiels d’action dans différentes fenêtres temporelles de plusieurs cellules. Le nombre de
dimension D de ces distributions (le nombre total de fenêtres) est assez important, ce qui
complique l’inférence. En particulier, l’algorithme du maximum de vraisemblance peut être
implémenté avec un modèle défini par sa fonction génératrice, mais sa complexité est im-
portante à cause du calcul de la fonction de vraisemblance. Cette dernière fait intervenir le
calcul des ND premières valeurs de la distribution à partir de la fonction génératrice : c’est
essentiellement une transformée de Fourier rapide en D dimensions. Or, pour les applica-
tions qui nous intéressent, D peut être grand (de l’ordre de la centaine), rendant impraticable
l’algorithme.

Une variante pour l’inférence a donc été imaginée : il s’agit de maximiser une fonc-
tion de pseudo-vraisemblance, qui est la somme des fonctions de vraisemblance de plusieurs
marginales unidimensionnelles (ou bidimensionnelles). Une telle marginale est en pratique
la somme sur un sous-ensemble des composantes de la distribution. Autrement dit, c’est le
nombre de potentiels d’action dans la réunion de plusieurs fenêtres temporelles de différentes
cellules. Le calcul de la fonction de pseudo-vraisemblance est plus rapide, puisqu’il n’implique
des FFT qu’en 1 ou 2 dimensions.

Cet algorithme a été implémenté en Matlab durant ce stage : il prend en entrée un
modèle de distribution de probabilité multidimensionnelle défini par sa fonction génératrice,
les différentes marginales choisies, ainsi que les données. Il retourne les paramètres du modèle
qui minimisent la fonction de pseudo-vraisemblance. Il utilise une méthode classique d’opti-
misation implémentée d’origine dans Matlab.

Le modèle PNMP : élaboration et inférence

Les outils décrits précédemment nous ont servi à élaborer un modèle particulier pour les
trains de potentiels d’action des cellules ganglionnaires de la rétine, et à le confronter aux
données expérimentales obtenues dans le laboratoire.
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Méthodologie

Le parcours utilisé pour trouver un modèle satisfaisant était le suivant. D’abord, les distribu-
tions unidimensionnelles expérimentales du nombre de potentiels d’action dans des réunions
de fenêtres temporelles sur plusieurs cellules étaient observées graphiquement. Nous avons
tenté d’appliquer différentes distributions de probabilité classiques à ces données, à l’aide de
la méthode des moments ou du maximum de vraisemblance (c’est faisable rapidement car le
cadre est unidimensionnel à cette étape).

Une fois une bonne distribution trouvée, nous l’avons généralisée en un processus ponctuel
multidimensionnel (que nous avons appelé le modèle NM ). Nous avons alors lancé l’algorithme
du maximum de pseudo-vraisemblance pour inférer les paramètres du modèle à partir des
données. Les marginales unidimensionnelles choisies étaient soit le nombre total de potentiels
d’action dans une fenêtre étroite sur un grand nombre de cellules, soit le nombre de potentiels
d’action dans une large fenêtre temporelle sur des cellules individuelles. Dans le premier cas,
les résultats étaient très intéressants, laissant penser que le modèle parvenait bien à capturer
les corrélations entre cellules. Dans le second cas en revanche, les distributions théoriques et
expérimentales ne correspondaient pas du tout.

Nous avons alors amélioré le modèle à l’aide de la technique des cluster processes, con-
duisant au modèle PNMP. C’est ce modèle que nous avons retenu pour conduire différents
tests à l’aide de l’algorithme d’inférence. Nous avons en particulier regardé si le modèle par-
venait à capturer non seulement les marginales unidimensionnelles du nombre de potentiels
d’action dans différentes fenêtres, mais aussi les corrélations entre cellules.

La distribution de Poisson

La première distribution unidimensionnelle que nous avons tenté d’appliquer aux distributions
du nombre de potentiels d’action dans différentes fenêtres était la distribution de Poisson. Le
processus ponctuel correspondant est le processus de Poisson, qui est le plus simple et le mieux
compris. C’est aussi celui qui est utilisé en majorité pour modéliser des trains de potentiels
d’action. C’est un processus totalement aléatoire : seule la fréquence de décharge (densité
locale moyenne du nombre de potentiels d’action, c’est une fonction déterministe) est fournie
au modèle. Les émissions de potentiels d’action respectent cette moyenne mais sont totale-
ment aléatoires en dehors de cette contrainte. La légitimité de ce modèle pour représenter
des trains de potentiels d’action dans certains cas est contestée par les chercheurs, car le
processus de Poisson ne permet pas de capturer les corrélations et la synchronisation qui sont
souvent observées expérimentalement, et qui ont vraisemblablement un rôle computationnel
important.

Les résultats obtenus montrent clairement que le processus de Poisson n’est pas du tout
un bon modèle pour nos données. Cela confirme le fait qu’il est réellement nécessaire de
trouver un meilleur modèle de processus ponctuel.

La distribution negative multinomial

La distribution géométrique, et surtout sa généralisation, la distribution negative multinomial,
donnent des résultats beaucoup plus intéressants. La fonction génératrice de cette dernière
est, en une dimension :

G(x) =

(
1

1 +K(1− x)

)κ
,
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où K,κ > 0 sont des paramètres. Cette distribution capture très bien le nombre total de
potentiels d’action dans une fenêtre étroite de temps (environ 20 ms), sur un grand nombre
de cellules simultanément.

Le processus NM

Nous avons donc défini, à l’aide des fonctions génératrices, un processus ponctuel multidi-
mensionnel généralisant cette distribution. Le processus ainsi obtenu, que nous avons appelé
processus NM, est défini par la fonction génératrice suivante :

G(h1, . . . , hN) =

(
1

1 +
∑

i

∫
RKi(t)(1− hi(t)) dt

)κ
,

où les Ki : R→ [ 0, 1 ] sont des fonctions régulières. Ce modèle donne cependant de mauvais
résultats sur une large fenêtre temporelle (environ 100 ms), avec une seule cellule.

Le processus PNMP

Nous avons essayé d’utiliser la technique des cluster processes pour améliorer le modèle. Cette
technique consiste à composer deux processus ponctuels, le premier définissant des clusters,
le second générant les potentiels d’action au sein de chaque cluster. Cette opération s’effectue
facilement avec les fonctions génératrices. En composant le modèle NM avec deux processus
de Poisson, nous avons obtenu et implémenté le modèle PNMP. Sa fonction génératrice est :

G(h1, . . . , hn) =

exp

(
λ

∫ ((
1

1 +
∑

i

∫
Ki(t)

(
1− exp

(∫
µi(u)(hi(u− t− v)− 1) du

))
dt

)κ

− 1

)
dv

)
.

C’est ce modèle qui nous a semblé intéressant et sur lequel nous avons travaillé pour
le comparer aux données, et pour voir s’il capturait les corrélations dans le temps et entre
cellules.

Résultats et conclusion

Protocole

Nous avons lancé l’algorithme du maximum de pseudo-vraisemblance sur toutes les paires et
tous les triplets de cellules. Ayant 40 cellules dans les enregistrements expérimentaux mis à
notre disposition, il y avait donc 780 paires et 9880 triplets à tester. Les marginales choisies
pour l’algorithme étaient le nombre de potentiels d’action pour chaque cellule dans toute la
grille (de 100 ms). Nous y avons ajouté les distributions jointes des paires de ces marginales
pour espérer capturer les corrélations entre cellules.

Résultats

Les résultats sont très variables selon les paires et les triplets. Nous avons tenté de les trier
selon un score général rendant compte de l’adéquation du modèle aux données (le maximum
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des erreurs relatives des variances et covariances des marginales de chaque cellule). D’autres
score plus appropriés pourraient bien sûr être envisagés.

Pour une petite partie des paires et des triplets, les résultats sont très satisfaisants. Les
marginales unidimensionnelles (nombre de potentiels d’action dans une fenêtre de 100 ms)
empiriques et théoriques sont visuellement assez proches, tandis que les covariances sont
très bien capturées. Pour les autres paires, les résultats sont moins bons, surtout en ce qui
concerne les covariances. Il semble que cela soit surtout dû à des covariances empiriques
négatives que le modèle n’est pas capable de capturer. Il s’agit là d’une faille important du
modèle PNMP qu’il faudrait résoudre dans le futur.

Conclusion

Au final, ce modèle donne de bon résultats dans une partie non négligeable de cas et semble
être un bon point de départ pour trouver un bon modèle. Plusieurs améliorations sont
envisageables, et elles continueront à être explorées après la fin de ce stage. De plus, il
serait possible d’essayer des modèles différents dans le cadre développé durant ce stage, à
savoir à l’aide des fonctions génératrices et de la discrétisation aux distributions du nombre
de potentiels d’action dans plusieurs fenêtres temporelles. Les premiers résultats obtenus
ici montrent que cette nouvelle approche est potentiellement aussi puissante que celles déjà
existantes.
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Introduction

General introduction

The brain is an organ of bewildering complexity, perhaps the most complex in the universe.
In order to understand its functioning, experimentations involving electrophysiological data
gathering are essential. Recently, new experimental devices like multi-electrode arrays have
allowed neuroscientists to record simultaneous activity of many neurons. In the past, our
technology allowed us to record only the activity of single neurons. This technological advance
offers us a new promising ability to understand how the functioning of the brain emerges from
interactions between many neurons. Yet, a full comprehension of the functioning of the brain
critically needs statistical tools and theoretical modeling in addition of data gathering.

The vertebrate retina is a part of the brain simple enough to be studied quantitatively, but
complex enough to be interesting. Experimental and theoretical studies on the retina may
allow us to understand processes occurring within the whole brain. Therefore, I’ve worked
during this internship on probabilistic and statistical tools for understanding the complex
statistical structure of the neural activity of the retina. They offer a new approach to the
analysis of any electrophysiological data and a better comprehension of the neural code.

This thesis presents first the broad context of this internship : the early visual system,
computational neuroscience and statistical analysis of electrophysiological data. Then, my
work on the theoretical tools and on their application to retinal activity modeling are pre-
sented in the second part of this thesis.

Contributions

I’ve made the following contributions during my internship.

1. I’ve written a short mathematical introduction to the theory of point processes on the
real line. It contains basic definitions and results needed for applications to spike train
data analysis (see Appendix C). Almost all presented results are in classical reference
textbooks [5, 6]. Those precise statements are required to define properly particular
point process models (see Theorems 13 and 24).

2. I’ve written a Matlab implementation of the maximum pseudo-likelihood algorithm. It
can be used for any point process model given in terms of a probability generating
functional (see Section 6.3 for details).

3. This program relies on a simple algorithm for inverse-transforming probability gen-
erating functions using a Fast Fourier Transform. I proved the convergence of this
algorithm (see Appendix B).
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4. I’ve performed statistical tests to show that, according to our experimental data, gan-
glion cell spike trains are not Poisson.

5. I’ve defined with Kolia Sadeghi a point process model for retinal ganglion cell spike
trains (see Section 7), called the PNMP model.

6. I’ve used the Matlab program to infer the PNMP model’s parameters from the data,
and to compare model predictions with experimental observations.

Overview of this thesis

This thesis is organized as follows.

• Scientific context. This part presents the general scientific context this internship is in
line with. It is intended to those who have no knowledge in biology or in computational
neuroscience. Reading this whole part is not required to understand the mathematical
aspects of this internship. However, it can be useful to refer to it in order to understand
the biological motivations and implications of this work. Besides, previous work about
the statistical study of the electrical activity of the retina, which my internship forms
the continuation, are presented.

◦ The Berry Lab in Section 1. It introduces the research project and the experimen-
tal protocol in the Berry Lab, in which I did my internship.

◦ The visual system in Section 2. It gives the bases needed to understand the
biological object under study : the retina and the visual system.

◦ Computational neuroscience in Section 3. It is an introduction to computational
neuroscience, which the general research project of the Berry Lab is a subdomain.
While the goal of computational neuroscience is to understand the algorithmic pro-
cesses occurring in the brain, the goal of the Berry Lab is to focus on computations
in the retina (which is part of the brain).

◦ Statistical exploration of spike train data in Section 4. It presents some theoretical
aspects of the exploration of electrophysiological data, as well as previous work on
statistical tools and properties of retinal ganglion cell spike trains.

• Point process models of spike trains. This part details my actual work on proba-
bilistic and statistical tools for spike train data analysis, and their use in the research
of a satisfying point process model of retinal ganglion cell spike trains.

◦ Theory of point processes in Section 5. This section presents the bases of point
processes theory, and some tools to define and manipulate particular models.

◦ Modeling spike count statistics of groups of cells in Section 6. A statistical tool to
fit models on data is presented in this section. It is called the maximum pseudo-
likelihood algorithm. It lies in a discrete framework, contrary to probabilistic tools
lying in a continuous framework.

◦ A path toward an efficient model for spike trains in Section 7. In this section, we
use the probabilistic and statistical tools presented before to design a particular
model for ganglion cell spike trains. The path we took to find this model is detailed
in this section.
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◦ Results of the PNMP model in Section 8. Some results of this model are presented
in this section.

• Mathematical appendices contain precise mathematical definitions, theorems and
proofs that are used throughout this report.

◦ Appendix A contains the definition of probability generating functions and mar-
ginals.

◦ Appendix B contains the proof of an algorithm for inverse-transforming probability
generating functions, used in the statistical tool presented in Section 6.

◦ Appendix C is a self-contained mathematical introduction to the theory of point
processes on the real line. It contains rigorous definitions and theorems used
during this internship.
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Figure 1: Left : a Tiger Salamander. Right : experimental setup in the Berry Lab.

Scientific context

1 The Berry Lab

1.1 Presentation

General presentation of the lab

The Berry Lab is located in the Department of Molecular Biology, in Princeton University. It
is headed by Michael Berry, who is a physicist with an interest in computational neuroscience.
Researchers in the lab are mostly physicists or biologists. There is also one mathematician
(PhD candidate), Kolia Sadeghi, who has a background in computer science and applied
mathematics. I’ve been working in collaboration with him during my internship.

Research project

The vertebrate retina is a thin sheet of neural tissue in the eye, realizing the first step of the
vision process. It converts the visual information (the stimulus) into electrical signals (the
response) called spike trains, which are transmitted to the brain. The research project of
the lab is to understand the computations performed in the retina, that is, the algorithmic
processes converting images into spike trains, and the nature of the output signals of the
retina.

Experimental protocol

In order to study the functioning of the retina, experiments are done in the lab. They consist
in recording the electrical activity of ganglion cells in the retina (the output, generating
electrical signals for the brain) while projecting a visual flow to the retina. Retinas used for
experiments are extracted from Tiger Salamanders (a particular species of amphibians, see
Figure 1, left). An optical device projects a stimulus chosen by the experimentalist onto the
retina. A multi-electrode array set on the retina is then able to record simultaneously the
activity of hundreds of ganglion cells (see Figure 1, right).
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1.2 Research directions

Spike sorting

Several specific issues interest the researchers in the lab. Before all, the multi-electrode
array technique requires a post-processing algorithm, called spike sorting, to extract spikes
from raw data. It is briefly mentioned in Section 4.2. It involves algorithmic and statistical
tools. Several spike sorting algorithms already exist, but they are not well-adapted to the
experimental protocol in the lab. Researchers in the lab try to improve these algorithms for
the specific case of the retina.

Encoding

The encoding issue consists in developing mathematical models for the transformation process
performed in the retina, which maps the visual information into a set of spike trains. These
models often involve several layers, each one modeling a particular neural layer in the retina.
Linear and non-linear filters are then combined to model the whole process.

Decoding

The decoding issue is the inverse of encoding. It consists in developing algorithms to recover,
from the examination of spike trains, the stimulus which generated them. An efficient decod-
ing algorithm might help us to understand the encoding process in the retina, and the way
higher areas in the visual cortex deal with spike trains coming from the retina to perform
cognitive visual tasks.

Motion prediction

A biological issue of interest is the reaction of the retina to a moving visual stimulus. Indeed,
it has been shown that the retina is able to detect regularities in the motion, and predict
future motion of an uniform motion, for example. It allows an efficient way for coding
information. In the lab, simple mathematical models of the encoding process performed in
the retina are designed to capture that predictive feature.

Reliability, redundancy and compression

An other topic of interest in the lab concerns reliability, redundancy and compression. The
visual stimulus carries a huge amount of information, which must be transmitted and pro-
cessed very rapidly by the brain. An efficient compression task is performed by the retina,
taking into account any spatio-temporal statistical regularity in the natural world. On the
other hand, the neurons being very noisy by nature, a certain amount of redundancy during
the coding process is needed in order to yield a reliable signal. How this trade-off between
compression and redundancy is performed in the retina is a very interesting theoretical ques-
tion about the retina and the nervous system in general. Exploring these questions requires
a certain amount of theoretical tools, especially from information theory.

Role of correlations

Researchers also study the statistical structure of the output signals of the retina (spike trains
emitted by a large number of ganglion cells). The complex statistical structure observed in
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this set of spike trains is believed to contain important information about the stimulus. It
is the concept of population coding. In particular, it was recently shown that correlations
between cells are responsible for a very important part of this structure. Quantifying the
correlations between spike trains of different cells and understanding their role in the neural
code are fundamental issues in computational neuroscience.

Point processes approach to spike trains statistical analysis

Finally, a last research direction in the lab consists in using the mathematical theory of
point processes to study multiple ganglion cell spike trains. The goal is to find specific point
process models describing the firing statistics of ganglion cells, and to give a framework for
investigating the role of correlations between different cells. That is the specific issue I’ve
been working on during my internship, in collaboration with Kolia Sadeghi.

2 The visual system

In this section, we give an overview of the biological object of study in the Berry Lab : the
visual system, and especially the retina. The main reference is the PhD thesis of Adrien
Wohrer [16].

2.1 Overview of the visual system

Introduction

Visual perception is the ability to interpret information from visible light reaching the eyes.
This task is extremely complex, and is entirely performed in the cortex. Before the informa-
tion reaches the cortex, it is processed through several layers which are part of the early visual
system. The latter comprises the eye (including the retina), the lateral geniculate nucleus
(LGN), and the primary visual cortex.

The eye

The eye (see Figure 2, left) contains two successive lenses, the cornea and the crystalline
lens, which project incoming light on the retina, at the back of the eye (see Figure 2, left).
The iris (responsible for the color of the eyes) is a circular membrane at the front of the eye
and plays the role of an optic diaphragm. It surrounds a variable aperture : the pupil, which
provides a first adaptation to the incoming levels of light in the eye.

The retina is a thin sheet of neural tissue at the back of the eye. It converts light into
electrical activity. Its anatomy and physiology are detailed in the next subsection. Retinal
output axons are bundled in the optic nerve, which links the retina to the thalamus and the
cortex.

Beyond the eye : the LGN and the cortex

More specifically, the optic nerve projects onto the lateral geniculate nucleus (LGN), which is
part of the thalamus, and plays the role of a relay station between the retina and the cortex.
From the LGN, the visual information is then transmitted to the primary visual cortex (V1)
which is a two-dimensional, layered sheet of neurons. It’s located in the occipital lobe, at
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Figure 2: Left : anatomy of the eye (from [16]). Right : different types of cells in the retina
(from [9]).

the rear of the brain, and it is the first cortical processing step during visual perception. It
performs, among others, edge detections and segmentation. Finally, higher-level areas in the
brain (V2, V3, ..., V8) are responsible for advanced processing of the visual information.

2.2 The retina

An organization in layers

There are five different types of cells in the retina, which are organized along five different
layers (see Figure 2, right). Each type of cell has a specific function in the general process of
transforming light into electrical activity suitable for the brain.

Photoreceptive cells

Incoming light goes through the whole thickness of the retina and reaches photoreceptive
cells at the back (on the top of the figure). They convert light into electrical activity during
the phototransduction process. There are two types of photoreceptive cells : cones and rods.
Cones are basically activated during daytime, whereas rods are useful especially during the
night. The density of photoreceptive cells is much higher in the fovea (in a way, the center
of the field of view) than in the remaining of the retina. It implies that vision is precise only
on the very center of the field of view.

Horizontal, bipolar, amacrine and ganglion cells

Photoreceptive cells transmit signals via synaptic connections to bipolar cells. Horizontal cells
are involved in inhibitory modulation of those transmissions. Then, bipolar cells transmit
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signals to ganglion cells. Amacrine cells are involved in inhibitory modulation of those
transmissions. Ganglion cells perform the last processing step in the retina. Their axons are
bundled in the optic nerve ; they emit action potentials (spikes) which propagate to the LGN
and the cortex.

Experimental advantages of ganglion cells

In the lab experiments, multi-electrode arrays record extracellular currents of ganglion cells.
There are mainly three reasons to record the activity of ganglion cells instead of other types
of cells in the retina [16]. First, the functional importance of the retina lies in its output
: spike trains generated by ganglion cells. They are the only signals the cortex receives
about the visual information. Second, ganglion cells are much larger than other retinal cells,
which small size make experimental measures difficult. It implies that recording electrical
activity is easier for ganglion cells. Finally, ganglion cells fire spikes, which can be recorded
by extracellular recordings. Other retinal cells, on the contrary, can only be studied by
intracellular techniques, since they don’t fire any kind of spikes.

3 Introduction to computational neuroscience

3.1 The lab project : a subdomain of computational neuroscience

Computations in the retina and in the brain

The research project in the Berry Lab is to understand the theoretical functioning of the
retina, i.e. discover the algorithmic processes occurring in the retina. Computations occur
not only in the retina, but also within the whole brain. Understanding them is the goal
of computational neuroscience. An analogy with computers might help to understand the
nature and the role of those computations.

In a computer, information is encoded as series of binary digits, and transmitted by
transistors. In the brain, information about the external world is encoded as a temporal
series of pulse-like stereotyped electrical signals called spikes. The latter are emitted and
transmitted by neurons. The conversion between analogue signals from the external world
(light, sound...) and spike trains is performed by particular neurons called receptive cells (like
in the retina). Finding the rules behind the theoretical mapping between stimuli and spike
trains is the main goal of computational neuroscience.

Most of the work in the lab concern the particular case of the retina, but some of them
are general enough to be applied to the whole brain. For example, theoretical tools for an-
alyzing spike train data are quite general. The computational study of the retina should
thus be considered as a subdomain of computational neuroscience, since a better comprehen-
sion of computations in the retina can lead to a better comprehension of the computational
functioning of the brain.

Advantages of studying the retina in computational neuroscience

Why choosing the retina in computational neuroscience, instead of another part of the brain
? First, the retina is an important part of the brain since it is the entry point in the vision
process, and vision is very important among primates and humans. Moreover, the retina is
a relatively simple part of the brain, but its functioning is nonetheless quite interesting and
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non-trivial [11]. A more pragmatic reason is that it can be removed from the eye without
damage to internal connections, and continues to function in vitro for several hours. Also,
the general function of the retina is well known. It converts the visual information into neural
signals suitable for the brain, and transmits the result through the optic nerve to the brain.

Additionally, inputs and outputs are well identified, and can be respectively controlled
and recorded. The input is the visual flow which hits photoreceptive cells, and can be easily
controlled during experiments. The output is a pattern of neural activity generated by the
ganglion cells, and can be recorded with a multi-electrode array. Very few other parts of
the brain have these advantages of admitting well-defined inputs and outputs. Furthermore,
unlike most areas of the brain, there are no backward projections from higher parts in the
brain onto the retina. It means that the only input in the retina is the visual flow. It is
a very rare property in the brain, since, particularly in the cortex, there is a large amount
of recurrent connections between different areas. It implies that retina processing can be
studied as a closed problem involving solely the retina itself [16].

3.2 Biological foundations

In the following paragraphs, we present the biological and theoretical foundations of compu-
tational neuroscience.

Neurons

Neurons are electrically excitable cells which form the basic components of information pro-
cessing in the central nervous system. They are essentially made up of three different parts
(see Figure 3, left) : the dendrites, the soma, and the axon. Retinal ganglion cells are
particular types of neurons.

Input electrical signals (waves of voltage between the inside and the outside of the mem-
brane cells) come from hundreds of neural cells connected to the neuron’s dendrites. The
junctions between neurons are called synapses : they relay the information via the release of
neurotransmitters during the synaptic transmission process. Dendrites conduct the electrical
stimulation to the cell body, or soma. The incoming electrical signals are then added up,
and if the resulting voltage exceeds a threshold, a new signal is transmitted through the axon
cable to an output neuron’s dendrite.

Spikes

Input electrical signals coming from the synapses are added during the integration process.
If the resulting voltage of the cell’s interior relative to the cell’s exterior is raised above some
threshold, an action potential, or spike, is generated at the beginning of the axon. It is a very
brief pulse-like stereotyped wave of voltage of high intensity (see Figure 3, right). It travels
along the axon until its end, at a synapse with another neuron, where it usually causes a new
synaptic transmission.

Just after a spike has been emitted, the cell can’t emit any other spike during an interval
of a few milliseconds, called the refractory period. The very brief duration of spikes (a few
milliseconds) allows us to consider them as instantaneous events. Therefore, it is now assumed
that neurons communicate with a discrete code, made of a temporal series of spikes called
spike trains.
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Figure 3: Left : anatomy of a neuron (from [15]). Right : an action potential, or spike
(from [14]).

3.3 Some theoretical issues

The stochastic nature of neuronal activity

When a stimulus is presented several successive times to a sensory neuron, the resulting
successive spike trains are similar, but not identical : one can observe significant trial-to-
trial variability. It shows the stochastic nature of neuronal activity. Despite that noise,
information encoded by receptive cells is often very reliable.

That very important observation implies that theoretical models for studying the neural
code should be developed in a probabilistic context. For example, the mathematical process
of encoding, transforming a physical signal to a pattern response of neural activity, should
not be a classical function, but rather a conditional probability distribution of observing a
response given the stimulus. Regarding data exploration tools, such noise requires the use of
a statistical framework.

The neural code

Neurons in the brain communicate using spike trains. For example, sensory receptors are
neurons which convert physical stimuli to spike trains, allowing the brain to process informa-
tion about them. Cells in the retina, olfactory neurons or taste neurons are some examples
of sensory receptors. Each different stimulus which is accessible to our sensory system is
represented in the brain as a pattern of spikes trains : that is the notion of neural code.

There are basically two different ways of considering neural coding from a theoretical
point of view. The first is linked to the concept of firing rate : it is the average local density
of spikes as a function of time. Rate coding assumes that only the firing rate is relevant as
regards the neural code, spikes being thought as independent realizations of Poisson (random)
processes. Spike coding, on the other hand, assumes that precise spike timing is relevant, and
that spike trains are not totally independent. Rate coding models are theoretically simpler
since they involves continuous functions. Spike coding models involve discrete stochastic
processes (emissions of spikes), and classical mathematical tools are not available anymore.

The specific question whether rate coding or spike coding is actually used throughout the
brain was highly controversial during the past decades. It is nevertheless globally assumed
nowadays that only spike coding can account for every complex feature experimentally ob-
served in the brain (such as correlations between cells or synchronization).
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Modeling neuron activity

Theoretical studies in computational neuroscience involve design of neuron models. There
are basically two sorts of models : biological models and computational models [2]. Biolog-
ical models aim at describing biological, physical or chemical phenomena in action during
neuronal activity. The famous Hogdkin-Huxley model [7] is an example of biological model
: it describes the emission of an action potential with four non-linear differential equations
modeling the dynamics of ionic channels in the cell membrane. There are a lot of other
biological models for both subthreshold dynamics and spike emission (the integrate-and-fire
model [1] for example).

Computational models describe networks of neurons, in order to understand how neu-
rons interact to perform computations all together. Cellular mechanisms involved in neural
activity are not addressed in these models : each neuron is considered as an idealized math-
ematical object, performing a simple computation on its inputs, and giving the result in its
output. Understanding the emergence of complex behaviors in a network of simple compo-
nents (neurons) is the fundamental issue in these models. McCulloch and Pitts neurons [10]
or Hopfield networks [8] are some examples of computational models.

4 Statistical exploration of spike train data

4.1 Overview

In order to understand the neural code, it is essential to perform experiments and collect
spike train data. Then, statistical analysis of the data is an essential complement to data
gathering. It is closely linked to modeling neuron activity. Statistical studies of the data
allow to discover properties of the biological objects. These properties are then reflected in
the models. Finally, statistics allow to compare models with the data.

In this section, we give a few different aspects of spike train data analysis. First, we
present the very first step of spike train data analysis, spike sorting, which consists in extract-
ing discrete emissions of spikes from continuous extracellular recordings. Then we describe
two previous work which this internship is based on. The first concerns a particular set of
theoretical tools used in spike train data analysis. The second is a deep result about the
statistical structure of the retinal code.

4.2 Spike sorting

For a few decades now, we have been able to record the electrical activity of a large number
of neurons simultaneously thanks to multi-electrode arrays. For the particular case of the
retina, ganglion cells’ extracellular activity is recorded while the visual stimulus is experimen-
tally controlled [11]. Discrete spike emissions can be recovered from continuous extracellular
recordings thanks to spike-sorting algorithms. They are basically based on statistical learning
algorithms. That is the first step in any spike train data analysis.

Intracellular recordings

In order to record the electrical activity of neurons, two methods can be used. Intracellular
recordings require the insertion of a sharp micro-electrode inside the cell which records the
voltage between the inside and the outside of the membrane cell. The intracellular recording
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Figure 4: Left : a multi-electrode array. Right : a multi-waveform.

technique of the voltage clamp, invented in the 1940’s, allowed Hodgkin and Huxley (Nobel
Price in 1963) to design a mathematical model of the generation of an action potential [7].
Those techniques are difficult to perform in-vivo.

Extracellular recordings

Extracellular recordings involve the introduction of an electrode into the neural tissue, or
the positioning of a multi-electrode array (see Figure 4, left) on the neural tissue (like the
retina). In the latter case, electrodes record voltages generated in the extracellular matrix by
the current fields outside the cells in the local region when they generate action potentials.
Thus, each electrode records the activity of several cells. The intensity of the signal decreases
when the distance to the electrode increases. Furthermore, signals recorded during emissions
of action potentials are smaller than with intracellular recordings. Figure 4 (right) shows
signals recorded by each electrode during a small interval of time. One can observe a spike
generated by a cell close to an electrode in the top-left of the array. Signals recorded by
farther electrodes are smaller with distance.

Goals of spike sorting

Signals recorded by extracellular electrodes are continuous, whereas spike emissions are dis-
crete. Therefore, experiments involving recordings by a multi-electrode array need a post-
processing algorithm for extracting occurrences of spikes from electrode signals. It is a sort of
shape recognition problem : the particular form of spikes helps to detect them in the signals.
That is the spike-sorting problem ; it is difficult in general for several reasons. First, spikes
generated by different cells can overlap in time. Second, there is a certain amount of noise
in the recordings. Finally, the algorithm should be able to identify which cell emitted each
spike.

The step of spike sorting is very important in spike train analysis. Indeed, statistical ex-
ploration of spike trains deals exclusively with outputs of spike sorting algorithms. Therefore,
it is critical to have an efficient spike sorting method that doesn’t introduce any bias.
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4.3 Spike train data analysis with point processes

Here we mention a specific line of work applying the theory of point processes to spike train
data analysis. The second part of this thesis describes my work on an other method of
application.

Point processes

Point processes are the mathematical formalization of spike trains. Multidimensional point
process models can account for experimentally-observed correlations between spike trains.
Such models, if shown to be accurate, can help us to explore the role of correlations in the
retinal code.

The more basic point process model for spike trains consists of independent Poisson
processes. It is a simple but inefficient model in several cases, and in particular for the
retina. Indeed, as mentioned later in this section, it can’t capture experimentally-observed
ISI distributions neither correlations between cells. Therefore, a few work, described below,
tried to design more accurate models.

The conditional intensity function

Previous work using the theory of point processes to study spike trains use the conditional
intensity function (CIF). The latter can be described as a “conditional firing rate” of a point
process : it is the probability that a spike is emitted between t and t + dt given the past of
the process until time t. An analytical expression for the likelihood function can be usefully
obtained from the CIF, making statistical inference easy.

Goodness-of-fit tests

Goodness-of-fit tests can be performed using the time-rescaling theorem and a Kolomogorov-
Smirnov plot [4]. A suitable time reparametrization transforms any point process model given
in terms of its CIF into an homogeneous Poisson process. Then, the Kolmogorov-Smirnov
plot displays the rescaled empirical versus Poisson cumulative distribution functions. The
closer the plot is from a y = x line, the better is the model. Also, the Aikake Information
Criterion (AIC) can be used. It is a score giving the overall goodness-of-fit of a model with
respect to the data. It measures the trade-off between how well the model fits the data and
the number of model parameters needed to achieve this fit.

Results

Those tools were applied to several data sets [3], and in particular to retinal ganglion cell
spike trains. Several models were tested : the Poisson process, and point processes with
gamma and inverse Gaussian ISI distributions. Goodness-of-fit tests described above showed
that the inverse Gaussian distribution is better than the two other models.

A new approach

The limitation with the previous approach is that models defined with their ISI distributions
are renewal processes. Non-renewal processes may be interesting in order to capture time
correlations. Also, defining a model with its CIF is difficult except for a linear autoregressive
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model. An approach enabling to design a greater variety of models was investigated during
this internship. It makes use of the probability generating functional, a simple but powerful
tool. To our knowledge, this tool hasn’t been used yet in spike train data analysis. It is the
main topic of the second part of this thesis.

4.4 Role of correlations

Here we give important results obtained recently about the statistical structure of retinal
ganglion cell spike trains. They emphasize the role of correlations between cells in the neural
code of the retina, and legitimize the approach used in this internship.

Modeling correlations

It was recently shown that correlations between cells capture a very large part of the whole
statistical structure of the retina output [12]. More specifically, let σi = ±1 be the activity of
cell i : +1 if it spikes, -1 otherwise. At any time, the state of the system (comprising N cells)
can be described by a N -long binary word, where each digit is the activity of each cell. The
object under study is the probability distribution over the set of all N -long binary words.

The Ising model

A model for that probability distribution, assuming observed pairwise correlations but no
higher-order interaction, was used. The more natural model satisfying those conditions is a
maximum-entropy model. It is called the Ising model and it comes from statistical physics.
Its expression is :

P (σ1, . . . , σN) =
1

Z
exp

(∑
i

hiσi +
∑
i 6=j

Jijσiσj

)
,

where Z is the partition function (normalization factor). The hi and Jij coefficients must be
chosen in order to fit exactly the observed firing rates and correlations (in other words, so
that order 1 and 2 moments fit the data). Computing these parameters is a particular case
of a Boltzmann machine learning problem [13]. One method for this computationally hard
problem is Monte Carlo simulation.

Results emphasize the importance of correlations

Results show that the Ising model is much better than an independent model which assumes
no interaction between cells. Moreover, it was shown with tools from information theory that
this model captures 90% of the statistical structure of the output. It suggests that order-2
interactions are sufficient to explain the statistical structure of the retinal neural code. It
offers a very interesting simplification since higher-order interactions imply a big complexity
cost in any model. As a consequence, a model successfully capturing correlations is probably
also able to capture the whole statistical structure of the neural code. This result legitimizes
the fact that in the second part of this thesis, we try to design a model for spike trains that
captures well correlations between cells.
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Point process models of spike trains

5 Theory of point processes

Point processes are the mathematical formalization of single or multiple spike trains. The
theory is relatively recent, since it has been extensively studied especially in the second half
of the twentieth century. There are applications in a lot of very different scientific domains
that involve random instantaneous time events (forestry, epidemiology, zoology, geography,
seismology, astronomy...).

Applications of the theory of point processes to spike train data analysis consist in defining
point process models for spike trains, assess their validity, and possibly infer their parameters
to fit the data. One would like such models to capture observed statistical properties of spike
trains. Those models would then give a framework for investigating the role of correlations
between cells in the neural code.

During my internship, I’ve studied a way for designing point process models for multiple
spike trains, and a statistical tool to infer their parameters. Then, I’ve applied those tools
to find an efficient model with respect to experimental data obtained in the lab. The results
of these work are presented in the remaining of this thesis.

5.1 Definitions of point processes

There are several ways of defining a point process. Here, we give first an intuitive definition,
and then we give the formal definition of a point process, following the reference textbooks [5,
6]. More precise mathematical statements about the foundations of point processes can be
found in Appendix C. It contains every mathematical definition and theorem required in
order to design particular models of point processes.

An intuitive definition

A point process on the real line is a random process of discrete events . . . < t−1 < t0 <
t1 < . . . ⊂ R. In neuroscience applications, each ti represents the time of a spike emission.
Actually, one could give a formal definition of a point process this way, but a very more
general definition is available.

A measure-theory definition

A general point process can be defined over any well-behaved topological space. In this
document, we are only interested in point processes on the real line, even if some generaliza-
tions are needed to consider, for example, multidimensional point processes. Such details are
treated only in the appendix.

Recall that a simple counting measure over R is a measure µ such that µ(B) ∈ N for any
bounded Borel set B in R, and, ∀x ∈ R, µ({x}) ∈ {0, 1}. Such a measure assigns the (finite)
number of events in any bounded subset B ⊂ R. The points x ∈ R such that µ({x}) = 1 are
the atoms of the measure. The space M(R) is the set of all simple counting measures.

A point process is a random simple counting measure N , that is, a measurable map
N : (Ω,A, P )→M(R), where (Ω,A, P ) is a probability space. Each realization of the point
process is a simple counting measure. Its atoms are the time events (spikes) of the realization.
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The counting process associated to the point process, also noted N(t), is defined as the
number of spikes between 0 and t (in the case where the support of the point process is in R+).
It is an increasing, right-continuous, integer-valued step stochastic process, and contains all
the information about the point process.

5.2 Common objects associated to point processes

In this section, we give the definitions of some objects commonly associated to point processes,
which are useful in order to define and manipulate particular point process models.

Interarrival times

Instead of considering the arrival times ti, one can consider the interarrival times ui = ti+1−ti.
They are positive random variables. Joint probability distributions of subsets of interarrival
times can be used to define particular classes of point processes. For example, assuming
that the interarrival times are independent and identically distributed leads to the notion
of renewal processes. Such processes have the property that the occurrence of an event at
time t depends only on the time elapsed since the last event. To define a particular renewal
process, it is sufficient to give the probability distribution of the interarrival distribution.

Event counts

One can also consider the number of events in a fixed time window, or in a set of time
windows, yielding a joint discrete probability distribution. Indeed, the number of events
in a window is a random variable over N. Specifying such distribution for any set of time
windows completely characterizes a point process, under certain compatibility conditions (see
Appendix C for details).

The probability generating functional

The probability generating functional (pgfl) of a point process is the function G(h), where h
is a well-behaved function R→ [ 0, 1 ] (such that h(t) = 1 if |t| is large enough), defined by :

G(h) = E
(

exp

(∫
R

log h(t)N( dt)

))
= E

(∏
i

h(ti)

)
,

where the ti’s are the random time events of the point process. It completely characterizes a
point process. From the pgfl, it is easy to obtain the probability generating function (pgf) of
the joint probability distribution of spike counts in any set of disjoint time windows. Actually,
the pgfl is simply the generalization of the pgf for point processes. That property will be
used for statistical inference of point processes in Section 6.

The pgfl allows to define a particular point process model : one first expresses a formula
for the pgfl, and checks a few natural conditions (see Theorem 24). This theorem then claims
that a point process with that pgfl actually exists. This tool is powerful since it allows to
express a large variety of different models.
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The conditional intensity

The conditional intensity is the stochastic process λ(t) defined (informally) by :

λ(t) ' 1

dt
P (N(t+ dt)−N(t) = 1 | Ht),

whereHt is the past of the process up to time t. Therefore, λ(t) is the conditional expectation
that a spike occurs between t and t + dt, given the past up to time t. It is a bit difficult to
define the conditional intensity in formal terms. One possibility is to use the Doob-Meyer
decomposition of a submartingale.

One can define a point process by giving an expression for the conditional intensity. An
important example is the class of self-exciting processes (or Hawkes processes), where the
conditional intensity is basically a linear regression of the past.

5.3 Generalizations, operations and properties

Multidimensional point processes

A multidimensional point process is a collection of a finite number of point processes on
R. One can also see it as a point process over R × {1, . . . , K} (it is a particular case of a
marked point process). Each event occurrence is of the form (t, k), where t is the time of the
event, and k the index of dimension. For example, multiple spike trains are represented by
multidimensional point processes. The index is the cell which emitted the spike.

Independent superposition

Let N1 and N2 be two point processes. One can define the independent sum N = N1 +N2 :
it is the independent superposition of the point processes. The event count in a time window
B ⊂ R is the independent sum of the event counts of N1 and N2 : N(B) = N1(B) +N2(B),
where the two terms in the sum are independent discrete random variables. Also, the pgfl
of N is the product of the pgfls of N1 and N2 : G(h) = G1(h)G2(h). The independent
superposition of point processes is the simplest operation, but it is not very useful when
defining a new point process. It can’t capture any correlation across time or across dimensions
(for multidimensional point processes).

Cluster processes

A cluster process is a more complex operation on point processes. One considers a first point
process, called the center process, which events represent centers of clusters. A second point
process, called the component process, defines the behavior of the events inside each cluster.
The two point processes are assumed independent. A few assumptions on the center and
component processes are needed so that a cluster process doesn’t explode, i.e. the events are
almost surely finite in any finite Borel set in R.

If the pgfls of the center and component processes are respectively Gc(h) and Gm(h), then
the pgfl G(h) of the cluster process is the composition of the pgfls : G(h) = Gc(Gm(h(·− t))).
This notation should be explained : the functional Gc takes the function t 7→ Gm(h(· − t))
in input, where h(· − t) is a translated version of h.

This operation is useful because it might be relevant for spike trains models. Clusters
could represent firing events, and spikes inside each cluster may have different statistical
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properties. That is the main operation used in Section 7, where we try to find an efficient
model for retinal ganglion cell spike trains.

Stationary processes

In this thesis, we are interested in finding an efficient point process model for stationary spike
trains. It means that spike trains are considered as if they were defined on the whole real
line, and were translation-invariant. The condition for a point process to be stationary can
be easily expressed with its pgfl : G(h) = G(h(· − t)), for all t ∈ R, where h(· − t) is a
translated version of h.

5.4 The Poisson process

The Poisson process is a simple yet very important point process. That’s why it is presented
in this section, whereas more specific models for spike trains are presented in Section 7.

The homogeneous Poisson process

An (homogeneous) Poisson process with rate λ > 0 can be seen as a totally random point
process. It satisfies two important properties :

1. The interarrival times are independent and identically distributed : they follow an
exponential distribution with parameter λ. The probability of an event occurrence at
time t depends only on the elapsed time since the last event.

2. The independent increments property : events occurring in a time window are totally
independent of ones occurring in a disjoint time window.

The spike count distribution of an homogeneous Poisson process in an interval [ a, b ] is a
Poisson distribution of parameter λ(b− a). Its pgfl is :

G(h) = exp

(
λ

∫
R
(h(t)− 1) dt

)
The inhomogeneous Poisson process

The Poisson process can be generalized first by removing the first property, leading to the
definition of an inhomogeneous Poisson process. Its rate is a continuous positive function
λ(t). The interarrival times are not independent anymore, but the independent increments
property still holds. An homogeneous Poisson process with parameter λ is an inhomogeneous
Poisson process with constant rate λ(t) = λ.

The spike count distribution is a Poisson distribution of parameter
∫ b
a
λ. Its pgfl is :

G(h) = exp

(∫
R
λ(t) (h(t)− 1) dt

)
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Renewal processes

Also, a point process which satisfies only the first property is a renewal process : the interar-
rival times are independent and identically distributed, but can follow any distribution over
R+.

The special feature of the Poisson process among renewal processes lies in the memo-
rylessness property of the exponential distribution of the interarrival times. This property
states that P (T > t+ s | T > t) = P (T > s), and characterizes the exponential distribution
among continuous probability distributions over R+. In a sense, the Poisson process is thus
the most random process among renewal processes.

Interest of the Poisson process in computational neuroscience

The inhomogeneous Poisson process has been widely used in computational neuroscience.
First, it is the simplest point process, and it has been extensively studied. Also, it is the
correct mathematical formalization of spike trains when one assumes that a rate code is used
in the brain instead of a spike code. The relevant quantity is then the firing rate (the rate
of the inhomogeneous Poisson process), and spikes are emitted randomly from this rate.
According to this point of view, spikes trains carry information only with their rate, and
single spikes are irrelevant.

That point of view is now discussed : both correlations across time and cells and synchro-
nization were shown to have important computational roles in the brain. Poisson processes
can’t account for that. Scientists now try to investigate the implications of the non-Poisson
nature of spikes trains in the neural code.

In this internship, it was first checked that Poisson processes are a very bad model for
stationary retinal ganglion cell spike trains. The goal was then to find more complex point
process models that fit better the data. A statistical tool for checking the validity of point
process models with respect to the data is presented in the next section.

6 Modeling spike count statistics of groups of cells

In this section, we describe a particular statistical method for estimating parameters of a
multidimensional point process model given in terms of a probability generating functional
with respect to the data.

6.1 Description of the problem

Original problem statement

The original problem statement is the following. We have a theoretical model of a multidi-
mensional point process depending on a parameter Θ ∈ RM , and we have experimental data
of Nc simultaneous spike trains (Nc is the number of recorded cells). Under the hypothesis
that these experimental spike trains follow this stochastic model, the problem is to estimate
Θ from the data. In general, this is a difficult problem.
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Figure 5: Spikes trains grid.

Binning process

The idea developed in this section is to transform this continuous estimation problem into
a discrete one, via the binning operation. It means that we subdivide time in bins of equal
length τ . In each bin, we consider the number of spikes.

We then restrict our attention to a grid consisting of Nb (Number of Bins) successive time
bins and Nc cells. The total time course of this grid is T = τNb. The object under study is
then the NbNc-dimensional discrete spike count distribution in the grid.

As an example, Figure 5 shows experimental spike trains of four cells in a grid where
T = 3 s. Here, the number of cells Nc = 4, the number of bins Nb = 6, the bin length
τ = 500 ms and the window length T = 3 s.

Discretization of the point process model

Recall that we have a multidimensional point process model for the spike trains, depending
on a parameters vector Θ. This model is given in terms of a probability generating functional
GΘ(h1, . . . , hNc). The goal of statistical estimation is, in this context, to find the Θ which fits
best the data. As this problem can be difficult in general, we use the binning transformation
to simplify the estimation process.

The pgf formulation allows to obtain an expression for the pgf of the joint probability
distribution of spike counts in the grid from the pgfl of the point process :

G̃Θ(zij) = GΘ

(Nb−1∑
i=0

zij1 [τi,τ(i+1) ]

)
j=1,...,Nc

 .

The Nc functions given as inputs for GΘ are piecewise-constant functions. They are equal
to 1 outside [ 0, Nbτ ]. Their values inside each bin are the parameters of the pgf of the
multidimensional spike count distribution.
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New problem statement

Finally, the new problem statement is the following. We observe successive independent 1

realizations of a NbNc-dimensional discrete probability distribution (the spike counts in each
realization of a grid). The realizations are given in each time window [Ti, T (i+1) ]. We have
a model for this probability distribution in terms of a pgf depending on a multidimensional
parameter Θ. The goal is to estimate Θ from the data.

The dimension of the probability distribution can be high, since the number of cells can
be as large as the experimental conditions allow it (100+ cells). Moreover, we would like to
have as much bins as possible in order to capture temporal correlations of spike trains.

In the remaining of this section, we begin by presenting common strategies for parametric
estimations. Then, we study the particular statistical method of maximum pseudo-likelihood
estimation to respond to this problem.

6.2 Parametric estimation of a probability distribution

Statistical estimation of a probability distribution

The statistical estimation problem is the following. We observe, from any type of experiment,
a data set, consisting in a list of L multidimensional points x1, . . . , xL ∈ RD. In the following,
we only consider the case where the data points always lie in ND. The starting hypothesis is
that these data points are successive independent realizations of a probabilistic model. That
is, we assume that there exists a probability distribution P over ND, such that (x1, . . . , xL) is
a realization of (X1, . . . , XL) where the Xi’s are independent identically distributed random
variables over ND with probability distribution P .

Maximum-likelihood estimation

In the parametric framework, one assumes that P lies in a given family of probability distri-
butions (PΘ)Θ, where Θ is a multidimensional parameter in RM . The goal of the parametric
estimation is then to find the Θ that fits best the data. The maximum-likelihood method
consists in maximizing the likelihood function L(Θ) = P (x1, . . . , xL | Θ) over the set of all
possible Θ. The likelihood function is the probability of observing the data given the param-
eter Θ. The Θ which maximizes L is thus the parameter which explains best the data in this
context.

Given that we made the hypothesis that the xi are independent, the likelihood function
takes the simpler form : L(Θ) =

∏
i P (xi | Θ). It is often convenient to take the logarithm

of the likelihood :

logL(Θ) =
L∑
i=1

logP (xi | Θ).

This function can also be expressed in terms of the empirical probability distribution P̂ (k),
which is the frequency of occurrences of k ∈ ND in the data set :

1Actually, the independence condition is not necessarily verified. Temporal correlations can be observed
over long periods (> 100 ms) in a single spike train. Therefore, a spike count realization in a time window
is not necessarily independent from the realization in the following time window. However, if the window
length T is high enough, one can assume that these realizations are independent.
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logL(Θ) =
∑
k∈ND

P̂ (k) logP (k | Θ).

Difficulty of computing the likelihood function

For practical applications, one should be able to compute the likelihood function, either
analytically or numerically, in an efficient way. Indeed, its maximization can be performed
by a numerical optimization algorithm, which requires an important number of function
evaluations.

A first problem is that, when the dimension D of the probability distribution P is high,
the analytic expression of P can be very complex, and its computation can be difficult.
Moreover, the size of the data can be very important when D is high, and a large number of
terms appear in the sum in the first expression of logL. In the second expression, another
problem is undersampling when D is large.

In order to compute the likelihood function when the probability distribution is expressed
as a probability generating function (pgf) G, one first numerically computes the probability
mass function (pmf) (the P (k | Θ) values) from G. The transformation from the pgf into the
pmf is performed by an algorithm involving a D-dimensional Fast Fourier Transform. This
transformation would occur several times at each step of the optimization procedure, for every
evaluation of the likelihood function. When D is high, this method is totally intractable.

6.3 Maximum pseudo-likelihood estimation of a probability distri-
bution given in terms of a probability generating function

The pseudo-likelihood function

Another possibility is to consider a variant of the likelihood function, called the pseudo-
likelihood function. It consists in first considering a set of one-dimensional marginals. These
marginals (see Section A.2) are sums over any subsets of the Xi’s. In our case of interest, they
consist in spike counts in any union of bins in the grid. They are unidimensional probability
distributions.

Then, we introduce the pseudo-likelihood function :

L̃(Θ) =
∑
j

N∑
k=1

P̂j(k) logPj(k | Θ),

where P̂j(k) and Pj(k | Θ) are respectively the empirical and theoretical unidimensional

marginals. The number N is such that P̂j(k) = 0 when k > N . It always exists since there
is only a finite amount of data.

To compute the values of a theoretical marginal (Pj(k | Θ)), one first needs to compute the
unidimensional marginal’s pgf from the multidimensional pgf of the model. As this marginal
is a union of bins, its pgf can be computed immediately (see Proposition 2 in Appendix A).
This particular property of the pgfs is one of the main advantages of defining models as pgfs.
Then, the Pj(k | Θ) values can be computed from the marginal’s pgf with a unidimensional
FFT.

It is possible to use also marginals of several dimensions : joint distributions of unidimen-
sional marginals. The contribution term in the likelihood expression is simply :
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Lj(Θ) =
N∑

k1,...,kd=1

P̂j(k1, . . . , kd) logPj(k1, . . . , kd | Θ).

Advantages and disadvantages of the algorithm

This procedure is more efficient than the full maximum-likelihood algorithm, but the result
is theoretically less interesting, since the maximization function doesn’t have a clear inter-
pretation (especially because the marginals are not independent in general). Nevertheless,
interesting results obtained with this algorithm may suggest that the model is interesting.

Implementation in Matlab

The maximum pseudo-likelihood algorithm was coded in Matlab. The main function, called
maxPL, has three inputs : the model specifications (especially the probability generating
functionG), the list of marginals specifications (for each marginal, the set I with the notations
of Section A.2), and the data (the list of the N first values of the probability mass functions
of the empirical marginals). The output is the parameters vector maximizing the pseudo-
likelihood function.

This function simply calls a Matlab optimization procedure (fmincon or fminunc for the
constrained and unconstrained case, respectively) for the function PLfun. This function
takes a parameter as input, and returns the pseudo-likelihood value and its gradient at the
input parameter point. This computation involves a call to the function laplace2proba, which
takes a probability generating function G as input, and returns the N first values of the
corresponding probability mass function. It performs essentially a FFT of (G(eikπ/N))k.

7 A path toward an efficient model for spike trains

7.1 Introduction

Overview

In this section, we use the probabilistic and statistical tools presented in the previous sections
to find an efficient stationary point process model of spike trains. The starting point is
the Poisson process (Section 7.2) : several statistical tests show that it is a bad model.
The investigation of experimentally-observed spike count distributions of multiple cells over
different time bins lead us to introduce the negative multinomial process (Section 7.4). It is
basically a generalization of the negative multinomial distribution for point processes. The
existence of the negative multinomial (NM) process hasn’t been found in the literature, but
it was proved using classical point process theorems (see Theorem 26 in Appendix C). The
model is shown to give better results than the Poisson process, but fails to capture the spike
count distribution of single cells over large bins. Therefore, in order to improve the model,
we use the cluster process technique to compose, in a precise mathematical sense, the Poisson
and NM processes, leading to the PNMP model (Section 7.5).
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Methodology

In order to find an efficient point process model for spike trains, we used the following method-
ology. First, we fitted different classical unidimensional discrete distributions to empirical
spike count distributions of a single or several cells over different time bins. We used the
method of moments or maximum-likelihood inference to fit those distributions to the data.
Once a probability distribution was found, we tried to generalize the distribution to the point
process case. That is, we tried to define a multidimensional point process model such that
spike count distributions follow that distribution. We used probability generating functionals
for this step (see Section 5). Then, we fitted the point process model to the data using the
maximum pseudo-likelihood algorithm (described in Section 6). When the results were not
accurate enough, we improved the model thanks to the cluster process technique.

To assess the validity of the models, we examined empirical and fitted unidimensional
spike count distributions over several subsets of cells and time bins. We also compared
empirical and theoretical spike count covariances of different cells.

Experimental data

We used two different data sets to fit our models. The natural movie data was obtained
when a 26 seconds-long natural movie of bushes in a continuous loop (the total length exper-
iment being one hour) was projected to the retina. The second data set was obtained with
the checker experiment, where pixels appeared randomly white or black every few tens of
milliseconds. All pixels acted independently across time and pixels. This stimulus was thus
stationary.

7.2 The Poisson process

We investigate in this section whether spike trains from retinal ganglion cells can be well
modeled as Poisson processes.

The Fano factor

For any given T > 0, the Fano factor F (T ) of a point process is defined as the quotient
between the variance and the mean of the spike count distribution N( [ a, a + T ]) in a time
window of length T . If N is a Poisson process, the spike count distribution is a Poisson
distribution, and F (T ) = 1. We computed, from experimental data, an estimate of the
Fano Factor for several time window lengths T . Indeed, when the stimulus is stationary,
the Fano factor F (T ) can be estimated as the quotient of the variance and the mean of the
experimental N( [nT, (n + 1)T ]) values. In Figure 6, both experimental and Poisson Fano
factors of a cell are shown.

Spike count distributions

In Figure 7, experimental and fitted Poisson spike count distributions are shown. The prob-
ability distribution is the spike count distribution of 10 cells in a 100 ms time bin. The
parameter of the theoretical probability distribution was inferred from the data with the
method of moments, which is equivalent to the maximum-likelihood estimation in this case.
It is clear from the observation of the plots (especially the right one, with a logarithmic
y-axis) that the experimental spike count distribution is not Poisson.
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Figure 6: Fano factor of a ganglion cell spike train.
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Figure 8: Left : Kolmogorov-Smirnov plot. Right : ISI distribution of a ganglion cell spike
train.

The Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test (KS-test) is a statistical test to check whether data follows
a specified theoretical probability distribution. This test yields a plot of the empirical cu-
mulative distribution function (cdf) of the data versus the cdf of the theoretical probability
distribution. If the data is actually resulting from the specified probability distribution, the
points in the plot would lay on a 45˚line.

In Figure 8 (left), the KS plot of the experimental ISI data of a particular cell is shown.
The theoretical cdf of the exponential distribution is F (x) = 1− e−λx, where λ is estimated
with the method of moments.

The interspike interval distribution

The interspike interval (ISI) distribution is defined as the probability distribution of the delay
between two successive spikes. In the case of a homogeneous Poisson process with parameter
λ, the ISI distribution is an exponential distribution with parameter λ. We computed the
experimental ISI distribution of cells with the experimental data. We also computed an
estimate of the rate parameter of the exponential distribution with the method of moments.
In this case, it is equivalent to the maximum-likelihood estimation. The experimental and
fitted exponential probability densities functions are shown in Figure 8 (right). The x-axis is
a logarithmic time-scale. Here again, the discrepancy between the empirical and theoretical
distribution is very important.

Time correlations

For a Poisson process, the number of spikes in two disjoint time intervals are independent (it is
the independent increments property). In particular, the correlation between the spike count
distributions in two successive time bins of same length is 0. We computed this empirical
correlation with the same experimental data, and for the same cell. More specifically, we
computed the correlation between N( [ (n−1)T, nT ]) and N( [nT, (n+1)T ]) with respect to
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Figure 9: Correlations between two successive time bins.

n, with different values of T . The results are shown in Figure 9. We can observe important
time correlations, which a good point process model should be able to capture.

Conclusion

In conclusion, these statistical tests show that the Poisson process is not a satisfactory model
for stationary spike trains of retinal ganglion cells. It emphasizes the necessity of finding a
better model.

7.3 The geometric distribution

In order to find a better point process model than the Poisson process, we consider spike
count distributions of cells over different time bins. We would like to obtain a theoretical
discrete probability distribution which fits well the data. We tried to test, instead of the
Poisson distribution, the geometric distribution. It is defined by :

P (X = n) =
1

1 +K

(
K

1 +K

)n
.

where K ∈ [ 0, 1 ] is a parameter. Its probability generating function is :

G(x) =
1

1 +K(1− x)
.

We used a standard maximum-likelihood procedure to infer the parameter of the geometric
distribution from the data. Here, it happens to be equivalent to the method of moments :
the estimated K is the mean of the empirical spike count distribution. One-dimensional fits
of this model are shown in Figure 10. Here, spike count distributions are considered over 10
cells in a 100 ms time bin.
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Figure 10: Experimental, Poisson and geometric spike count distributions.

The geometric distribution seems to be a better model than the Poisson distribution.
However, an improvement is possible by considering a more general distribution : the negative
multinomial distribution.

7.4 The negative multinomial process

The negative multinomial distribution

The geometric distribution is a particular case of the negative multinomial distribution. The
latter’s pgf is :

G(x) =

(
1

1 +K(1− x)

)κ
,

where κ > 0 is a parameter of the distribution. The pmf can be computed, but its analytical
expression is a bit complicated. It is much more convenient to manipulate this distribution
with its pgf. Fits of this model given by a maximum-likelihood estimation are shown in
Figure 11. This distribution seems to capture very well correlations between cells.

The negative multinomial process

In order to define a point process model extending the negative multinomial distribution, we
tried the following expression for the pgfl :

G(h) =

(
1

1 +
∫
K(t)(1− h(t)) dt

)κ
.

Here, h is a measurable function R → [ − 1, 1 ], which is equal to 1 if |t| is large enough,
and K(t) is a measurable function R → [ 0, 1 ]. When deriving the pgf of the spike count
distribution in a time window (using a piecewise constant h), it is easy to check that we obtain
the pgf of the negative multinomial distribution. It can be generalized in several dimensions
(as a multidimensional point process) :
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Figure 11: Experimental, geometric and NM spike count distributions.

G(h1, . . . , hn) =

(
1

1 +
∑

i

∫
Ki(t)(1− hi(t)) dt

)κ
.

Theorem 25 in Appendix C proves that this process is well defined : we call it the negative
multinomial (NM) process.

The PNM process

The NM process is not stationary, but one can slightly alter it in order to obtain a stationary
process. If G is the pgfl of a point process satisfying certain conditions, then the cluster
process obtained by the composition of an homogeneous Poisson process and that process
yields a stationary point process, the pgfl of which is :

G̃(h) = exp

(
λ

∫
(G(h(· − t))− 1) dt

)
.

It is immediate to check that this process is stationary. In this particular case, the
resulting point process is called the Poisson-negative multinomial (PNM) process, and its
pgfl is :

G(h1, . . . , hn) = exp

(
λ

(∫ ((
1

1 +
∑

i

∫
Ki(t)(1− hi(t− u)) dt

)κ
− 1

)
du

))
.

7.5 The PNMP process

Goals

The NM process is much better than the Poisson process. But, for certain cells, it fails to
model efficiently spike count distributions in large time windows, as shown in Figure 12 (a
single cell in a 100 ms time bin). The goal is then to improve the NM process in order to
enhance the results for single cells.
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Figure 12: Experimental and NM spike count distributions for a single cell.

The PNMP process

Our idea to improve the PNM process is to right-compose it with an inhomogeneous Poisson
process (using the same cluster process technique as for the PNM process). The resulting
process is called the PNMP (Poisson-negative multinomial-Poisson) process, and its pgfl is :

G(h1, . . . , hn) =

exp

(
λ

∫ ((
1

1 +
∑

i

∫
Ki(t)

(
1− exp

(∫
µi(u)(hi(u− t− v)− 1) du

))
dt

)κ

− 1

)
dv

)
.

Results obtained with this model are presented in the next section.

8 Results of the PNMP model

8.1 Implementation details and parameters

Implementation of the model

The PNMP model was coded in Matlab in a discretized version. More precisely, the prob-
ability generating function of the multidimensional spike count distribution of the grid (see
Figure 5) associated to the PNMP model was implemented. This discretization step is very
easy thanks to probability generating functionals : continuous variables of the pgfl (the hi’s)
are replaced by piecewise-constant functions : their values on the intervals are the parameters
of the associated discrete pgf.

Parameters of the discretized model

Also, continuous parameters (the Ki’s and µi’s) are replaced by piecewise-constant functions,
which values are the parameters of the discretized model. Continuous integrals are thus
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replaced by discrete convolutions. The step of the discretization is fixed to 5 ms : it is also
the size of the bin in the grid. The number of intervals for both parameter sets (Ki’s and
µi’s) are fixed to 3. The total number of parameters to fit in our implementation of the model
is then 2 + 6Nc (for each cell, 3 values for both Ki and µi, plus λ and κ).

Parameters of the grid

Our Matlab implementation of the maximum pseudo-likelihood algorithm was then used with
this model on the available experimental data. The number of bins and cells in the grid, and
the marginals to fit, were yet to be chosen. We tried several sets of parameters ; in general,
we chose between 4 and 20 bins, and between 2 and 5 cells.

Choice of marginals to fit

About the marginals to fit in the inference algorithm, we chose them so that the model could
capture both spike count distributions of single cells over a long time (the time course of
the grid), and correlations between cells. Therefore, we found that a reasonable choice of
marginals consisted in the combination of two types of marginals. First, one marginal for
each cell consisting of the union of all bins of the cell (total number of spikes for the cell in
the grid). Second, one bidimensional marginal for each pair of cells : the joint spike count
distribution of both cells during the full time course of the grid. If N is the number of cells
in the grid, then the number of marginals is N(N + 1)/2.

Complexity issues

After these parameters were fixed, we were able to run the optimization algorithm on several
sets of cells. It took about one minute on a recent multiprocessor Apple computer for the
algorithm to terminate in the case of two cells, and several minutes for up to five cells.
As we wanted to run the algorithm for every possible choice of pairs, triplets, quintuples,
etc. of cells, it took several days to obtain all results. For greater numbers of cells, both
combinations number and the complexity of single runs were far too high to obtain results
in a reasonable amount of time. We also couldn’t find an efficient method to parallelize the
implementation in Matlab. The different contributions of the pseudo-likelihood function (one
per marginal) may have been parallelized, but parallelization toolboxes in Matlab seemed not
efficient enough to yield significant reductions of time runs of the algorithm.

8.2 Pairs and triplets of cells

Overview

In order to test the PNMP model with respect to the data, we ran the maximum pseudo-
likelihood algorithm on every pair and triplet of cells. As there were 40 cells in our recordings,
there were 780 pairs and 9880 triplets. For each pair or triplet, we checked whether one-
dimensional fitted marginals (spike count for each of the two cells) were visually close to
empirical marginals. We also checked that covariances between cells were well captured.

We sorted the pairs and triplets according to the score of the model. This score was
the maximum of the relative errors (between empirical and theoretical values) of marginals’
variances and covariances. Figure 13 displays the distribution of scores among pairs and
triplets (only errors less than 100% are shown). A few pairs or triplets give very bad results
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Figure 13: Distribution of model scores among all pairs and triplets of cells.

with the PNMP model : it is very often due to negative covariances which the model currently
fails to capture. It is a known weakness of the model which is discussed later in this section.

Results : pairs and triplets of cells

We now give some unidimensional marginals of pairs and triplets of cells giving good results
(see Figures 14 and 16), along with relative errors of their variances and covariances (see
Figure 15 and 17). The bin length is 100 ms here (20 bins of 5 ms each).

Discussion

For those pairs and triplets, we can observe that the PNMP model gives good results.
Marginals are visually well captured, and relative errors of variances and covariances are
very small. For large values of spike counts (5 for cell 32 in the first pair, for example), we
can observe systematic overpredictions of the model. It may be an artifact due to undersam-
pling. Indeed, our experimental recordings of spike trains last about one hour, so there are
about 30k instances of the grid (100 ms each). When experimental spike count distributions
values are less than −4 in a logarithmic scale, it means that a few samples only are taken
into account. The actual value, which would be obtained with infinitely-long recordings, may
be higher, and closer to the model prediction.

As we can observe in the distribution of relative errors, not all cells give such interesting
results. A lot of pairs and triplets have large relative errors for their covariances, even if
marginals are very often well captured.

8.3 Weaknesses of the model

Negative covariances

An important remark is that even if we observe that some pairs of cells have negative empirical
covariances, the model can’t capture negative covariances. Indeed, theoretical covariances
between cells can be computed for the PNMP model. It can be shown that they are either
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Figure 14: Results of three pairs : unidimensional marginals (spike count in a 100 ms bin).
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Cells Empirical Model Error

31 0.1502 0.1518 1.07%
32 0.1493 0.1532 2.56%
31-32 0.0183 0.0178 2.81%

2 0.0530 0.0536 1.07%
4 0.0572 0.0577 0.97%
2-4 0.0020 0.0020 2.86%

16 0.6733 0.7150 6.19%
32 0.1493 0.1492 0.12%
16-32 0.0033 0.0033 1.57%

Figure 15: Results of three pairs : variances and covariances.
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Figure 16: Results of three triplets : unidimensional marginals (spike count in a 100 ms bin).
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Cells Empirical Model Error

5 0.5761 0.5788 0.48%
11 0.7692 0.8307 7.99%
39 0.1471 0.1539 4.66%
5-11 0.1906 0.1754 7.96%
5-39 0.0392 0.0430 9.60%
11-39 0.0507 0.0593 16.93%

1 0.5553 0.6160 10.93%
8 0.1601 0.1638 2.35%
23 0.1801 0.1898 5.44%
1-8 0.0464 0.0381 17.88%
1-23 0.0291 0.0297 2.27%
8-23 0.0102 0.0092 10.14%

2 0.0530 0.0534 0.76%
4 0.0572 0.0575 0.50%
38 0.3458 0.3594 3.96%
2-4 0.0020 0.0021 4.02%
2-38 0.0082 0.0086 4.63%
4-38 0.0100 0.0079 21.31%

Figure 17: Results of three triplets : variances and covariances.

all positive, either all negative, depending on the model’s parameters. The model should be
improved in order to capture both positive and negative covariances between cells.

Not enough parameters to capture all covariances

There are αNc+2 parameters in the PNMP model, where Nc is the number of cells. In order
to capture correlations between all pairs of cells, more parameters may be required. This
weakness has no effect when there are two or three cells in the model, as in the presented
results above. But some bad results we obtained with more cells may indicate that this is an
important problem of our model. Some leads to overcome these issues will be explored after
the end of this internship.

Conclusion

During this internship, we designed a new theoretical approach for understanding the statis-
tical properties of spike trains. It lies in the framework of point processes theory, and makes
use of the probability generating functional. Comparison of models and data was conducted
through discretization of the problem, leading to statistical inference of spike count distribu-
tions in several temporal bins. The latter was performed with a maximum pseudo-likelihood
algorithm, implemented in Matlab during this internship.

We applied these tools to experimental data coming from the retina. The goal was to find
an efficient point process model for multiple retinal ganglion cell spike trains. Noting first
that these spike trains were not Poisson at all, we progressively designed a better model (the
PNMP model) which was thought to give interesting results. For a reasonable proportion
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of cells, the model captures correlations between cells well. According to previous work
emphasizing the role of correlations in the statistical structure of retinal ganglion cell spike
trains, it may indicate that the PNMP process is an efficient model for these spike trains.

A few weaknesses of the model were highlighted, and some improvements will be still ex-
plored after the end of this internship. Nevertheless, early results obtained with the PNMP
model show that the approach developed during those few months using probability generat-
ing functionals is quite powerful. It seems to be an efficient complement of other approaches
already explored, and may help us to understand the neural code in the retina and in the
brain.
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Mathematical appendices

A Probability generating functions

A.1 Definition

Let (X1, . . . , XD) be a non-negative random variable over ND, and P = (an1,...,nD
) its proba-

bility mass function (pmf). By definition, an1,...,nD
= P (X1 = n1, . . . , XD = nD).

Definition 1 (Probability generating function).
The probability generating function (pgf) of the distribution law P is the function defined as
:

G(z1, . . . , zD) =
∑

n1,...,nD>0

an1,...,nD
zn1

1 . . . znD
D ,

where (z1, . . . , zD) is in the D-dimensional closed complex unit ball D(0, 1)D. G is C∞ on
D(0, 1)D.

A.2 Marginals

The random variable X = (X1, . . . , XD) is a measurable function (Ω,A, P ) → ND, where
(Ω,A, P ) is a probability space.

Let ∅ ( I ⊂ {1, . . . , D} be a set of indices. A marginal is the distribution of probability of
XI = σ|I| ◦πI ◦X, where πI is the projection from ND onto the subspace of ND corresponding
to the indices I, and σk : Nk → N is the sum function. There are 2D − 1 different marginals
(one for each I).

The following proposition shows that marginalizations with pgfs are extremely easy. It is
one of the main advantages of using probability generating functions.

Proposition 2 (Marginalizations with pgfs).
The pgf of (Xi)i∈I , where I ⊂ {1, . . . , D}, is equal to the function (zi∈I) 7→ G(z1, . . . , zD) with
zi = 1 for all i 6∈ I.

B Inverse transform of a probability generating func-

tion using a Discrete Fourier Transform

Probability generating functions are very useful when manipulating discrete multidimensional
distributions of probability, in particular when one wants to compute marginals. In this
appendix, we give an algorithm for computing an approximation of the first ND values of a
probability mass function over ND from its probability generating function. It is based on a
Fast Fourier Transform and thus requires O(DND logN) operations.
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B.1 Discrete Fourier Transform
Definition 3 (Discrete Fourier Transform).
Let x = (x0, . . . , xN−1) ∈ CN , with N > 1. The Discrete Fourier Transform (DFT) x̂ =
(x̂0, . . . , x̂N−1) ∈ CN of x is defined as :

x̂n =
1√
N

N−1∑
k=0

xke
−2iknπ/N .

The map x ∈ CN 7→ x̂ ∈ CN is a linear transformation, so we can write x̂ = UNx where
UN is a N ×N complex matrix. We have :

UN =
1√
N
FN , with FN = (e−2iklπ/N)(k,l)∈{0,...,N−1}2 .

FN is called the Vandermonde matrix associated with the values (1, e−2iπ/N , . . . , e−2i(N−1)π/N).
The matrix UN is symmetrical, and U−1 = U , so UN is a unitary matrix, and the DFT is

a unitary transformation. Therefore, we have the following properties :

• |detUN | = 1,

• UN is isometric : ‖x̂‖2 = ‖UNx‖2 = ‖x‖2.

• Developing the previous equality leads to the Parseval equality :

N−1∑
n=0

|xn|2 =
N−1∑
n=0

|x̂n|2 .

• We also have ‖UN‖2 = 1.

• If y is the DFT of x, that is :

yn =
1√
N

N−1∑
k=0

xke
−2iknπ/N ,

then we have the inverse relation (called Inverse Discrete Fourier Transform, or IDFT),
coming from U−1

N = UN :

xn =
1√
N

N−1∑
k=0

yke
2iknπ/N .

Discrete Fourier Transform can be generalized to the multidimensional case. We use
vector notation to obtain compact formulas. If n = (n1, . . . , nD), with D > 2, and m =
(m1, . . . ,mD) are two elements of ND, then products, divisions, and order relations are to
be performed component-wise. We also use the notation |n| =

∑D
i=1 ni, 0 = (0, . . . , 0),

1 = (1, . . . , 1).

Definition 4 (Multidimensional Discrete Fourier Transform).
Let N = (N1, . . . , Nd) and x = { xn | 0 6 n 6 N} ∈ C|N|. The Multidimensional Discrete

Fourier Transform x̂ = { x̂n | 0 6 n 6 N} ∈ C|N| of x is defined as :

x̂n =
1√∏d
i=1 Ni

N−1∑
k=0

xke
−2iπn·(k/N).
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B.2 Computing a probability mass function from a probability
generating function using a DFT

Let X be a random variable over N, P = (an)n∈N its pmf and G its pgf. In this section, we
give an algorithm for computing an approximation of the first N values a0, . . . , aN−1 of P
from G.

Theorem 5.
Let (an)n∈N be a non-negative sequence such that the series

∑
an is convergent, and G(z) =∑

anz
n defined in D(0, 1). Let x = (xn)n∈{0,...,N−1} with :

xn = G(e2inπ/N)/
√
N,

and x̂ = (x̂n) the DFT of x. Then we have, for N > 1, with RN =
∑∞

N an :

max
n∈{0,...,N−1}

|x̂n − an| 6 RN , and lim
N→∞

max
n∈{0,...,N−1}

|x̂n − an| = 0.

Proof. Let N > 1, GN (z) =
∑N−1

k=0 akz
k, and yn = GN (e2inπ/N )/

√
N .

We see that (y0, . . . , yN−1) is the IDFT of (a0, . . . , aN−1), so an = ŷn. From the Parseval
equality, we have :

N−1∑
n=0

|x̂n − an|2 =
N−1∑
n=0

|x̂n − ŷn|2 =
N−1∑
n=0

|xn − yn|2 .

Besides, we have :

|xn − yn| =

∣∣∣∣∣ 1√
N

∞∑
k=N

ake
2iknπ/N

∣∣∣∣∣ 6 RN√
N
,

where RN =
∑∞

N an. Thus :

max
n∈{0,...,N−1}

|x̂n − an| 6

√√√√N−1∑
n=0

|x̂n − an|2

6

√√√√N−1∑
n=0

|xn − yn|2

6

√√√√N−1∑
n=0

(
RN√
N

)2

6 RN .

Since the remainder of a convergent series always tends to 0, we conclude that :

lim
N→∞

max
n∈{0,...,N−1}

|x̂n − an| = 0.
�

We have a similar result for D-dimensional probability distributions.
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Theorem 6.
Let (an)n∈ND be a family in R+ such that the summable family

∑
an is convergent, and :

G(z1, . . . , zD) =
∑

anz
n,

defined in D(0, 1)D. Let x = (xn)n∈{0,...,N−1}D with :

xn = G(e2in1π/N , . . . , e2inDπ/N)/ND/2,

and x̂ = (x̂n) the multidimensional DFT of x. Finally, let RN =
∑

ni>N
an. Then we have,

for all N > 1 :

max
n∈{0,...,N−1}D

|x̂n − an| 6 RN , and lim
N→∞

max
n∈{0,...,N−1}D

|x̂n − an| = 0.

An algorithm to get the ND first values of a distribution of probability from its pgf simply
consists in computing the Discrete Fourier Transform of the D-dimensional matrix :

(Mn1,...,nD
) = G(e2in1π/N , . . . , e2inDπ/N)/ND/2,

where, ∀i, 0 6 ni 6 N − 1. The Discrete Fourier Transform can be computed using the Fast
Fourier Transform algorithm in O(DND log(ND)) operations.

C Introduction to the theory of point processes on the

real line

Point processes on the real line represent stochastic processes of random events in time.
They are of interest in various disciplines such as telecommunication systems, queuing theory,
computational neuroscience, and others. Here we give an introduction to the theory of point
processes on the real line, presenting basic definitions and tools used to define and manipulate
point process models. Then, some examples of models are given : the Poisson process, the
NM process and the PNMP process.

C.1 Introduction

What are point processes ?

Point processes are the mathematical formalization of random processes which occurrences
are discrete (or “atomic”) time or spatial events. For example, clients arriving in a queue,
buses arriving at a bus stop, spikes occurring in a neuron, radioactive decays detected by
a Geiger counter are examples of processes of random time events. They are intrinsically
random, and each event occurrence can be seen as a single point. Epicenters of earthquakes,
human settlements, locations of stars observed in the sky, positions of trees in a forest, are
examples of processes of random spatial events.

All these observed phenomena can be modeled as point processes on R (time events) or Rd

(spatial events). Actually, the theory can be generalized considering point processes on any
metric space satisfying some technical conditions. The mathematical formalization of point
processes relies on measure theory, Lebesgue integration, probability theory and stochastic
processes.
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Overview of the appendix

In this appendix, we give a brief introduction to the theory of point processes on the real
line. Most proofs are not given, but references for the general theory are proposed.

We first present general definitions and practical characterizations of point processes on
an abstract space (Section C.2). This is the only section where results are valid for point
processes on any general space. A key result of this section is Theorem 13, which gives
conditions to define properly a point process from its probability generating functional. It
is used several times later in the document to define particular point process models. In
Section C.3, we define the Poisson process. Then, in Section C.4, we present some extensions
and particular classes of point processes, especially cluster processes and multidimensional
point processes. We also give particular cases of these classes. Finally, we define the NM and
the PNMP processes in Section C.5.

C.2 General definitions

A point process as a random simple counting measure

Point processes can be defined on any complete separable metric space X with a countable
base, which form a very general class of spaces. Here, we are especially interested in point
processes on the real line R, which represent processes of random events in time. However,
we will need to consider point processes on R×K where K is a finite set, and on any closed
subset of R.

Let (X, d) be a complete separable metric space (one can assume X = R to simplify
matters), with B(X) its Borel σ-algebra. We will use the notation |B| ≡ diam(B) for any
B ∈ B(X). Let (Ω,A, P ) be a probability space, where A is a σ-algebra over the space Ω,
and P is a probability distribution over Ω.

Definition 7 (Counting measure).
A measure µ over X is a counting measure if, for all bounded Borel set B ∈ B(X) (i.e. such
that |B| <∞), we have µ(B) ∈ N. It is a simple counting measure if ∀t ∈ X,µ({t}) ∈ {0, 1}.

We denote by M(X) the set of all counting measures over X, and M∗(X) the subset
of all simple counting measures. The space M(X) is equipped with the smallest σ-algebra
such that, for any bounded Borel set B ∈ B(X), the application µ ∈ M 7→ µ(B) ∈ N is
measurable.

Actually, one can shows that M(X) can be given a topology (the topology of weak
convergence), which Borel σ-algebra is the σ-algebra of the previous definition. We denote
by B(M(X)) that σ-algebra.

Definition 8 (Point process).
A point process is a measurable function N : (Ω,A, P )→ (M(X), B(M(X))). It is a simple
point process if P (N ∈ M∗(X)) = 1. When X = R, we talk about a point process on the
real line.

Note that a point process is finite on each bounded Borel set, that is, N(ω,B) <∞ if B
is a bounded Borel set in X.

We will use the following abuse of notation : N(ω,B) ≡ N(ω)(B) for any bounded
Borel set B. Besides, we will use the notation N(B) ≡ N(·, B). According to the following
proposition, it is a random variable over N.
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Proposition 9.
Let N : (Ω,A, P ) → (M(X),B(M(X))) be a function. It is a point process if and only if,
for all 0 < s 6 t, the application N( [ s, t [ ) : Ω→ N is a random variable.

Proof. See [6], Theorem 9.1.VIII. �

From now on, we will consider only simple point processes.

Finite-dimensional distributions

The actual definition of a point process is not very convenient to define a particular point
process model. In this section, we show that a point process can be defined via its finite-
dimensional distribution, which is the joint probability distribution of events count in subsets
of X.

Definition 10.
Let N be a point process, and B1, . . . , Bk be bounded Borel sets in B(X). The probability
distribution of the multidimensional discrete random variable (N(B1), . . . , N(Bk)) is called a
finite dimensional distribution of N .

The following theorem gives conditions to define a point process with its finite-dimensional
distribution.

Theorem 11 (Kolmogorov Existence Theorem for Point Processes).
For every k > 1, and every B1, . . . , Bk bounded Borel sets in B(X), let pk(B1, . . . , Bk; ·) be
a distribution of probability over Nk. Then, they are the finite dimensional distributions of a
point process, i.e. there exists a point process such that :

∀n1, . . . , nk ∈ N, P (N(B1) = n1, . . . , N(Bk) = nk) = pk(B1, . . . , Bk;n1, . . . , nk),

if and only if the following conditions are satisfied, where B1, . . . , Bk+1 are any disjoint
bounded Borel sets in B(X) :

1. for any permutation (i1, . . . , ik) of the indices, we have :

pk(Bi1 , . . . , Bik ;ni1 , . . . , nik) = pk(B1, . . . , Bk;n1, . . . , nk),

2. we have :

∞∑
r=0

pk+1(B1, . . . , Bk, Bk+1;n1, . . . , nk, r) = pk(B1, . . . , Bk;n1, . . . , nk),

3. we have :

n∑
r=0

pk(B1, . . . , Bk; r, n− r, n3, . . . , nk) = pk−1(B1 ∪B2, . . . , Bk;n, n3, . . . , nk),

4. for any sequence (Bn) of bounded Borel sets such that Bn ↓ ∅, we have p1(Bn; 0)→ 1.

Proof. The proof of this theorem can be found in [6], Theorem 9.2.X. �
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Probability generating functionals

Probability generating functionals are the generalization for point processes of probability
generating functions for discrete multidimensional probability distributions. They are very
useful for defining and manipulating point processes.

Let V(X) be the set of all measurable functions h : X → [ 0, 1 ] such that 1 − h has a
bounded support.

Definition 12.
Let N be a point process. The probability generating functional (pgfl) of N is the function
G : V(X)→ X defined by :

G(h) = E
(

exp

(∫
X

log h(t)N( dt)

))
.

Here, the integral is with respect to the measure N(ω, ·) on X, so it is a random integral
depending on ω ∈ Ω. The expectation is with respect to ω.

When N is a simple point process with time events t0 < t1 < . . ., we have the following
alternative formula for the pgfl of N :

G(h) = E

(∏
i

h(ti)

)
.

We can define a point process with a pgfl thanks to the following theorem, analogous to
theorem 11, but in a certain way more elegant and natural.

Theorem 13 (Characterization of a point process from its pgfl).
Let G : V(X)→ X be a function. Then it is the pgfl of a point process if and only if :

1. G(1) = 1,

2. for every piecewise-constant function h of the form :

1− h =
k∑
i=1

(1− zi)1Bi
,

with |zi| 6 1 and Bi bounded disjoint Borel sets in X, the pgfl G(h) reduces to the pgf
of a discrete k-dimensional distribution of probability,

3. if hn ↓ h ∈ V(X) pointwise, then G(hn)→ G(h).

Proof. The proof of this theorem can be found in [6], Theorem 9.4.V. �

A point process on the real line as a random time events sequence

In this paragraph, we assume that X = R. Let N be a point process on the real line. For
each ω ∈ Ω, N(ω) is a realization of the point process. It is a simple counting measure : if
t ∈ R is such that N(ω, {t}) = 1, it means that an event occurred at time t. Thus, N(ω) can
be seen as a time events list . . . < t−1 < t0 < t1 < . . .. We formalize this in the following
definitions.
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Definition 14 (Counting process).
We define the counting process N(t) associated to the point process N as follows :

N(t) =


N( ] 0, t ] ) t > 0,

0 t = 0,

−N( ] t, 0 ]) t < 0.

This stochastic process is an integer-valued, non-decreasing and right-continuous process.
For t > 0, the integer N(t) represents the number of events that occurred between times 0
and t.

We can now define the time events process and interarrival time process of a point process
on the real line.

Definition 15.
1. For each i ∈ N, the i-th time event is the random variable over [ 0,+∞ ] defined by

ti = inf { t ∈ R | N(t) > i}.

2. For i > 1, the i-th interarrival time is τi = ti − ti−1.

From now on, we will consider only point processes on the real line.

C.3 The Poisson process

In this section, we give the definition of the Poisson process, which is the simplest non-trivial
point process on the real line.

The homogeneous Poisson process

Definition 16 (Homogeneous Poisson process).
Let λ > 0. The homogeneous Poisson process N with rate λ is defined by the following finite
dimensional distributions :

P
(
N( ] a1, b1 ] ) = n1, . . . , N( ] ak, bk ] ) = nk

)
=

k∏
i=1

(
λ(bi − ai)

)ni

ni!
e−λ(bi−ai).

Its pgfl is :

G(h) = exp

(
λ

∫
R
(h(t)− 1) dt

)
.

The verifications of the conditions of theorems 11 and 13 for the finite dimensional dis-
tributions and the pgfl of the Poisson process, and the proof that the two definitions are
equivalent, can be found in [5] and [6]. We give now some important properties of the
Poisson process.

Proposition 17.
Let N be a Poisson process with constant rate λ.
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1. The number of events N
(

] a, b ]
)

in an interval ] a, b ] follows a Poisson distribution
with parameter λ(b− a).

2. This distribution is stationary, i.e. it depends only on the length b− a of the interval.

3. The number of events in disjoint intervals are independent random variables ( indepen-
dent increments property).

4. The interarrival times are independent and identically distributed exponential random
variables with parameter λ :

P (τi 6 T ) = 1− e−λT .

5. The integer-valued random variable N
(

] a, b ]
)

has equal mean and variance :

EN
(

] a, b ]
)

= VN
(

] a, b ]
)

= λ(b− a).

Intuitively, the homogeneous Poisson process is a totally random process : the probability
of occurrence of a time event depends only on the occurrence of the previous time event, and
not on the whole past of the process.

The inhomogeneous Poisson process

Definition 18 (Inhomogeneous Poisson process).
Let λ(t) : R → R+ be a positive integrable function. The inhomogeneous Poisson process N
with rate λ(t) is defined by the following finite dimensional distributions :

P
(
N( ] a1, b1 ] ) = n1, . . . , N( ] ak, bk ] ) = nk

)
=

k∏
i=1

(
Λ(ai, bi)

)ni

ni!
e−Λ(ai,bi),

with :

Λ(a, b) =

∫ b

a

λ(t) dt.

Its pgfl is :

G(h) = exp

(∫
R
λ(t)(h(t)− 1) dt

)
.

The independent increments property is still valid for the inhomogeneous Poisson pro-
cess, but it is not stationary anymore. The interarrival times are still independent but not
identically distributed.

C.4 Extensions of point processes

Cluster process

A cluster process is a point process consisting of the superposition of two point processes
: the centre process, which represent the centers of random clusters, and the independent
component processes, which define the time events sequence inside each cluster. The formal
definition can be found in [5], Definition 6.3.I. Here we only give a convenient way to define
cluster processes as a composition of pgfl’s.
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Definition 19 (Cluster process).
Let Nc be a point process with pgfl Gc, and N(· | t) a family of point processes indexed by
t ∈ R, with pgfl’s Gm(· | t) such that, for each h ∈ V(R), the function t 7→ Gm(h | t) is
measurable on R. If the formula G(h) = Gc(Gm(h | ·)) is well defined and finite for each
h, then it is the pgfl of the cluster process with centre process Nc and component processes
N(· | t).

The existence condition of the cluster process can also be expressed as :∫
R
P
(
N(B | t) > 0

)
Nc( dt) <∞ P -a.s., for every bounded Borel set B ∈ B(R).

It is necessary so that the cluster process is a well-defined point process, i.e. the random
counting measure is finite on each bounded Borel set. The following proposition gives a
particular case for which a cluster process is well defined : the component processes are
translated independent instances of a point process with bounded support.

Proposition 20.
A cluster process with centre process Nc (with pgfl Gc) and component processes Nm(· | t)
(with pgfl Gm(h | t)) is well defined if the following sufficient conditions are satisfied :

1. the component processes are translated independent instances of a single process with
pgfl G0

m(h), i.e. we have :

∀t ∈ R, Gm(h | t) = G0
m(h(· − t)),

2. the pgfl G0
m(h) satisfies :

∃T > 0,∀h ∈ V(R) such that ∀ |t| 6 T, h(t) = 1, we have G0
m(h) = 1.

Multidimensional point process

In this section, we give the definition of a multidimensional point process, which can be seen
as a set of point processes on the real line. In the following, K is a finite set : K = {1, . . . , K}.

Definition 21 (Multidimensional point process).
A multidimensional point process is a point process on R×K.

One can see a multidimensional point process as a list of random time events with a mark
: (ti, ki) where ki ∈ K. Hence, each time event carries an extra information. Actually, this
definition is a particular case of a marked point process, for which the mark space can be very
general.

The following proposition shows that one can also see a multidimensional point process
as a set of K point processes on the real line, N1, . . . , NK , defined on the same probability
space (Ω,A, P ).

Proposition 22.
1. Let N : (Ω,A, P )→ (M(R×K),B(M(R×K))) be a multidimensional point process on

the real line with mark space K. The component processes N1, . . . , NK : (Ω,A, P ) →
(M(R),B(M(R))) are the point processes on the real line defined by :

∀ω ∈ Ω,∀B ∈ B(R), Ni(ω)(B) = N(ω)(B × {i}).
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2. Let N1, . . . , NK : (Ω,A, P ) → (M(R),B(M(R))) be K point processes on the real line
defined on the same probability space. Then we can define a multidimensional point
process N with the following formula :

∀ω ∈ Ω,∀B ∈ B(R), N(ω)(B × {i}) = Ni(ω)(B).

With this construction, the Ni are the component processes of N .

Proof. The proof is easy and left to the reader. It relies on the fact that a measure over R×K
can be seen as a set of K measures over R, thanks to the formula µ(B) =

∑
µ(Bi × {i}) =∑

µi(Bi) (with evident notations). �

That equivalence can help us to define the pgfl of a multidimensional point process. We
define VK(R) as the set of all the measurable bounded multivalued functions h : R→ [ 0, 1 ]K ,
such that 1− h has a bounded support.

Definition 23 (Pgfl of a multidimensional point process).
Let N be a multidimensional point process on the real line with mark space K. Let N1, . . . , NK

be its component processes. The probability generating functional of N is the function
VK(R)→ R defined by :

G(h) = E

(
K∏
i=1

exp

(∫
R

log hi(t)Ni( dt)

))
, where h(t) = (h1(t), . . . , hK(t)).

In particular, we can observe that if the component processes are independent, the pgfl of
N is simply the product of the pgfl’s of the component processes : G(h) = G1(h1) · · ·GK(hK).

We have an analogous of the theorem 13 allowing to define a multidimensional point
process from its pgfl.

Theorem 24 (Characterization of a multidimensional point process from its pgfl).
Let G : VK(R) → R be a function. Then it is the pgfl of a multidimensional point process if
and only if :

1. G(1) = 1,

2. for every h = (h1, . . . , hK) of the form :

1− hj =
k∑
i=1

(1− zij)1Bij
,

with |zij| 6 1 and Bij bounded disjoint Borel sets in R, the pgfl G(h) reduces to the pgf
of a discrete kK-dimensional distribution of probability,

3. if, for all j, the functions sequence h
(n)
j ↓ hj ∈ VK(R) pointwise, then G(h(n))→ G(h).

Proof. The proof is similar to the proof of theorem 13. �

C.5 The PNMP process

In this section, we define the negative multinomial process, and the PNMP process. They
are used as point process models for spike trains in Section 7.
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The NM process

Definition 25.
Let k1, . . . , kN : R → [ 0, 1 ] be integrable functions, and κ > 0. The negative multinomial
(NM) process is defined by the following pgfl :

G(h1, . . . , hn) =

(
1

1 +
∑

i

∫
ki(t)(1− hi(t)) dt

)κ
.

Proof. We use theorem 24 to prove that this pgfl defines a point process. There are three
conditions to check.

1. If ∀i, hi(t) = 1, then G(h1, . . . , hN ) = 1.

2. If 1 − hj =
∑

i(1 − zij)1Bij where Bij are bounded Borel sets in R and zij ∈ C such
that |zi| 6 1, then :

G(h1, . . . , hN ) =

1 +
∫

R

∑
i,j

(1− zij)1Bij

 kj(t) dt

−κ

=

1 +
∑
i,j

(1− zij)
∫
Bij

kj(t) dt

−κ

=

1 +
∑
i,j

pij(1− zij)

−κ ,
which is the pgf of a negative multinomial distribution.

3. If h(n)
i ↓ hi ∈ V(R) pointwise, then (1 − h

(n)
i (t))ki(t) → (1 − hi(t))ki(t) for almost

every t ∈ R. Moreover, 0 6 (1 − h(n)
i (t))ki(t) 6 ki(t) since ∀n ∈ N, ∀t ∈ R, h(n)

i (t) ∈
[ 0, 1 ]. But ki is integrable on R, and the dominated convergence theorem states that∫

(1− h(n)
i (t))ki(t) dt→

∫
(1− hi(t))ki(t) dt, and G(h(n)

1 , . . . , h
(n)
N )→ G(h1, . . . , hN ).

Therefore, theorem 13 applies, and the existence of the NM process is proved. �

PNMP

We now define the PNMP model as a cluster process, composed of Poisson and NM processes.

Definition 26 (PNMP).
Let k1, . . . , kN and µ1, . . . , µN : R→ [ 0, 1 ] be integrable functions with bounded supports, and
κ, λ > 0. The PNMP process is the multidimensional point process defined by the following
pgfl :

G(h1, . . . , hn) =

exp

(
λ

∫ ((
1

1 +
∑

i

∫
ki(t)

(
1− exp

(∫
µi(u)(hi(u− t− v)− 1) du

))
dt

)κ
− 1

)
dv

)
.

It is formed by successive compositions (cluster processes) of an homogeneous Poisson process,
the NM process, and an inhomogeneous Poisson process, hence the name PNMP process.
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Proof. To prove that the PNMP is well defined, it is sufficient to check conditions of Theo-
rem 20 for the two following compositions of cluster processes : the NM process composed
with an inhomogeneous Poisson process with bounded support, and an homogeneous Poisson
process with that process. But the conditions hold since the supports of the ki’s and µi’s are
bounded. �
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