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Developments in microfabrication technology have enabled 
the production of neural electrode arrays with hundreds of 
closely spaced recording sites, and electrodes with thousands 
of sites are under development. These probes in principle allow 
the simultaneous recording of very large numbers of neurons. 
However, use of this technology requires the development 
of techniques for decoding the spike times of the recorded 
neurons from the raw data captured from the probes. Here we 
present a set of tools to solve this problem, implemented  
in a suite of practical, user-friendly, open-source software.  
We validate these methods on data from the cortex, 
hippocampus and thalamus of rat, mouse, macaque and 
marmoset, demonstrating error rates as low as 5%.

One of the most powerful techniques for neuronal population  
recording is extracellular electrophysiology using microfabricated 
electrode arrays1–3. Advances in microfabrication have continually 
increased the number of recording sites available on neural probes, 
and the number of recordable neurons is further increased by having  
closely spaced recording sites. Indeed, while a single sharp electrode 
can provide good isolation of one or two neurons, placing as few  
as four recording sites together in a tetrode can reveal the firing 
patterns of 10–20 simultaneously recorded cells4–7. This increase  
is possible because each recorded neuron produces extracellular 
action potential waveforms (‘spikes’) with a characteristic spatio
temporal profile across the recording sites8–10. The process of using 
these waveforms to decipher the firing times of the recorded neurons 
is known as spike sorting11,12.

Spike sorting, as currently applied in nearly all labs using extra
cellular recordings, involves a manual operator. While some labs  
use a fully manual system, lower error rates can be achieved with a 
semiautomated process8, consisting of four steps. First, spikes are 
detected, typically by highpass filtering and thresholding. Second, 
each spike waveform is summarized by a compact ‘feature vector’, typi
cally by principal component analysis. Third, these vectors are divided 
into groups corresponding to putative neurons using cluster analysis. 
Finally, the results are manually curated to adjust any errors made by 
automated algorithms13. This last step is necessary because although 

fully automatic spike sorting would be a powerful tool, the output of 
existing algorithms cannot be accepted without human verification. 
A similar situation arises in many fields of dataintensive science: in 
electron microscopic connectomics, for example, automated methods 
can only be used under the supervision of human operators14.

For tetrode data, this semiautomatic process performs well, reaching 
error rates of 5% or lower as assessed by ground truth data obtained 
with simultaneous intracellular recording8. However, spike sorting 
methods developed for tetrodes do not work for a newer generation of 
larger electrode arrays15,16. This failure occurs for two reasons. First, 
the automated component can fail in high dimensions; for example, 
because of the ‘curse of dimensionality’ that affects cluster analysis in 
highdimensional spaces17. Second and perhaps more critically, the 
process of manual curation, while manageable with lowcount probes, 
cannot scale to the highcount case without software that guides 
the operator to only those decisions that cannot be made reliably  
by a computer. While many different methods for spike sorting have 
been proposed (for example, refs. 18–24), no method has yet solved 
these problems robustly enough to be widely adopted by the experi
mental community.

Here we describe a system for the spike sorting of highchannel 
count electrode data, implemented in a suite of freely available soft
ware. While the spike sorting problem has attracted considerable 
theoretical research, our goal was to produce a practical system that 
can be immediately used by working neurophysiologists. The ability 
to process large data sets (millions of spikes in hundreds of dimen
sions) in reasonable human and computer time was deemed essential; 
error rates comparable to those of commonly used tetrode methods 
were deemed acceptable. We tested the software on data recorded 
from rat neocortex with 32site shank electrodes, as well as data from 
other species and brain regions. While traditional methods performed 
extremely poorly on this data, the new algorithms gave close to theo
retically optimal performance. The techniques and software have been 
developed in a communityled manner, through extensive feedback 
from a user base of over 320 scientists in 50 neurophysiology labs. 
The software is downloadable and documented at http://cortexlab.
net/tools/ and is supported by an active usergroup mailing list,  
klustaviewas@groups.google.com.
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RESULTS
Our spike sorting pipeline involves three steps: (1) spike detection 
and feature extraction, (2) cluster analysis, and (3) manual curation. 
We describe these steps in order.

Spike detection
The first step of the pipeline is spike detection and feature extraction, 
implemented by the program SpikeDetekt.

The primary difference between spike detection for highcount 
silicon probes and for tetrodes is that temporally overlapping spikes 
are extremely common in the former. The spikes seen in these data are 
diverse (Fig. 1), with some detected on only one or two channels and 
others spanning large numbers of channels, as expected of pyrami
dal cells whose apical dendrites are aligned parallel to the shank25. 
In these data, simultaneous firing of multiple neurons is common. 
However, simultaneously firing neurons are usually detected on  
distinct sets of channels.

To deal with the problem of temporally overlapping spikes,  
we therefore sought to detect spikes as local spatiotemporal events 
(Fig. 2). This step requires knowledge of the probe geometry, which 
is specified by the user in the form of an adjacency graph (Fig. 2a). 
We illustrate the spike detection process with reference to a small 
segment of data containing two temporally overlapping but spatially 
separated spikes (Fig. 2b).

The first stage of the algorithm is highpass filtering the raw  
data to remove the slow local field potential signal (Butterworth in 
forwardbackward mode; Fig. 2c). Next, spikes are detected using a 
doublethreshold flood fill algorithm (Fig. 2d,e). Specifically, spikes 
are detected as spatiotemporally connected components, in which 
the filtered signal exceeds a weak threshold θw for every point and 
in which at least one point exceeds a strong threshold θs. Optimal 
values for these parameters were found to be 4 and 2 times the s.d. 
of the filtered signal, as described below. Two points are considered 
neighboring if they are on a single channel and separated by one time 
sample, or at a single time point on channels joined by the adjacency 
graph; this allows the algorithm to work with probes of any geometry, 
not just linear ones. The dualthreshold approach avoids spurious 
detection of small noise events because isolated islands in which only 
the weak threshold is exceeded are not retained. Conversely, spikes 
will not be erroneously split as a result of noise, as areas joined by 
weak threshold crossings are merged.

After detection, spikes are temporally realigned to subsample 
resolution, to the center of mass of the spike’s suprathreshold com
ponents, weighted by a power parameter p (see Online Methods). 
Visual inspection showed that spike times detected with this method 
corresponded closely to those that would be assigned by a human 
operator (Fig. 2e).

The waveforms of each spike are summarized by two vectors.  
First, a feature vector is found by principal component analysis of 
the realigned waveforms on each channel (three principal compo
nents were kept in the analyses reported here). All channels are used 
in computing the feature vector; thus our two example spikes have 
similar feature vectors, as their central times are similar (Fig. 2f). 
Second, a mask vector is computed from the peak spike amplitude 

on each detected channel, rescaled and clipped so channels outside 
the connected component have mask 0 and channels with amplitude 
above θs have mask 1. The mask vector allows temporally overlapping 
spikes to be clustered as coming from separate cells. Indeed, although 
the feature vectors of our two example spikes were very similar, their 
mask vectors are completely different (Fig. 2g).

Performance validation and parameter optimization
To quantify the performance and optimize the parameters of this 
algorithm requires ‘ground truth’: knowledge of when the recorded 
neurons actually fired. We created a simulated ground truth data set 
by repeatedly adding the spikes of a ‘donor cell’ identified in one 
recording to a second ‘acceptor’ recording made with same probe. 
Because the extracellular medium is a linear conductor26, addition of 
spike waveforms serves as a sufficient model for overlapping spikes. 
To evaluate the performance of the system, we chose ten donor cells 
with a variety of amplitudes and waveform distributions (Fig. 3a), 
using recordings from rat cortex with a 32channel probe shank. To 
model the variability of waveforms produced by a single neuron due 
to phenomena such as bursting27–29, we scaled each spike to a random  
amplitude in a range that varied by a factor of two (see Online 
Methods). We refer to the spikes added to the acceptor data set as 
hybrid spikes and the result as a hybrid data set.

To evaluate spike detection performance, we used a heuristic  
criterion to identify which spikes detected by the algorithm corre
sponded to which hybrid spikes (see Online Methods). We meas
ured performance as a function of three algorithm parameters (θw, θs  
and p), using four performance statistics.

The first statistic was the fraction of hybrid spikes detected  
(Fig. 3b). This showed a strong dependence on the thresholds: values 
of θs above 4 times the s.d. resulted in poor detection, particularly 
for lowamplitude cells. The dependence of performance on θw was 
more complex: poor performance resulted not just from overly high 
values (>2.5 s.d.) but also overly low values (<2 s.d.). Examination 
of example errors (not shown) indicated that overly low values of θw 
led to inappropriate merging of temporally overlapping but spatially 
separated spikes, while overly high values led to artificial splitting of 
single spikes.

The second statistic was the total number of detection events  
(Fig. 3c). Because this includes noise events as well as true spikes 
of the hybrid and background cells, this number should be as small 
as possible provided the fraction correctly detected remains high. 

25 ms

ba

Figure 1 High-count silicon probe recording. (a) Layout of the 32-site  
electrode array used to collect test data. (b) Short segment of data 
recorded in rat neocortex with this array. Color of traces indicates 
recording from the correspondingly colored site in a. Black rectangles 
highlight action potential waveforms; note the frequent occurrence of 
temporally overlapping spikes on separate recording channels.
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We found that this statistic most critically 
depended on the strong threshold, increas
ing markedly for values below 4 s.d.

The third statistic was timing jitter: the s.d. 
of the difference between the detected and 
actual times of each hybrid spike (Fig. 3d). Jitter was in all cases  
less than one sample and improved for larger values of θs and θw, 
indicating that spike times are best estimated from a minority of larger 
amplitude spikes. For all hybrid cells, jitter was worse for p < 1; for 
low amplitude cells, it showed a further worsening for p > 2, reflecting 
noise introduced by overweighting of peak amplitude times.

The final statistic was mask accuracy (Fig. 3e), which measures 
how closely the detected mask vectors match those expected from  
the ground truth (see Online Methods). This showed strongest 
dependence on θw, with a peak around 2 s.d., and less pronounced 
dependence on θs, peaking around 5 s.d.

We conclude that close to optimal performance can be obtained 
using a strong threshold of 4 s.d., a weak threshold of 2 s.d. and a 
power weight of 2. Furthermore, using these parameters yielded 
around 95% correctly detected spikes and a spike timing jitter  
of 0.5 samples.

Cluster analysis
The second step of our spike sorting pipeline is automatic cluster 
analysis, implemented in the program KlustaKwik. For tetrode  
data, we previously found that fitting a mixture of Gaussians gave 
closetooptimal performance8. This approach cannot be directly 
ported to highchannelcount data for two reasons. The first is the 
‘curse of dimensionality’: in high dimensions, noise measured on  
the large number of uninformative channels will swamp signals  
measured on the smaller number of informative channels. Second, 
because temporally overlapping spikes have similar feature vectors 

(Fig. 2f), further information such as the mask vectors must be used 
to distinguish these spikes.

To solve this problem, we designed a new method, the masked EM 
algorithm30. This algorithm fits the data as a mixture of Gaussians, 
but with each feature vector replaced by a virtual ensemble in which 
features with masks near zero are replaced by a noise distribution  
(see Online Methods). Channels with low mask values are thus 
‘disenfranchised’ and do not contribute to cluster assignment; the 
probabilistic nature of this disenfranchisement means false clusters 
are not created when amplitudes cross an arbitrary threshold. The 
computational complexity of this algorithm is better than that of the 
traditional EM algorithm, scaling with the mean number of unmasked 
channels per spike (which does not increase for larger arrays) rather 
than the total number of channels.

To evaluate the performance of this algorithm, we used the hybrid 
data sets described above. For each data set, we identified the cluster 
containing the most hybrid spikes and computed the false discovery  
rate (fraction of spikes in the cluster that were not hybrids) and  
the true positive rate (fraction of all hybrid spikes assigned to the 
cluster). To estimate the theoretical optimum performance that could 
be expected, we used the best ellipsoid error rate (BEER) measure8, 
which fits a quadratic decision boundary using ground truth data  
and evaluates its performance with crossvalidation, varying the 
parameters of the classifier to obtain a receiveroperating character
istics (ROC) curve showing optimal performance.

The masked EM algorithm’s performance on an example hybrid 
data set was close to the optimum estimated by the BEER measure, 
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Figure 2 Local spike-detection algorithm.  
(a) Adjacency graph for the 32-channel 
probe. (b) Segment of raw data showing two 
simultaneous action potentials on spatially 
separated channels. Scale bars indicate  
0.5 mV and 10 samples. (c) High-pass filtered 
data shown in pseudocolor format (units of s.d.). 
Vertical lines on the color bar indicate strong 
and weak thresholds, θs and θw (respectively  
4 and 2 times s.d.). (d) Grayscale representation 
showing samples that cross the weak threshold 
(gray) and the strong threshold (white).  
(e) Results of two-threshold flood fill algorithm, 
showing connected components corresponding 
to the two spikes in orange and brown. Isolated 
weak threshold crossings resulting from noise 
are removed. White lines indicate alignment 
times of the two spikes. (f) Pseudocolor 
representation of feature vectors for the 
two detected spikes (top and bottom). Each 
set of three dots represents three principal 
components computed for the corresponding 
channel (arbitrary units). Note the similarity of 
the feature vectors for these two simultaneous 
spikes (top and bottom). (g) Mask vectors 
obtained for the two detected spikes (top and 
bottom; 0 represents completely masked,  
1 completely unmasked). Unlike the feature 
vectors, the mask vectors for the two spikes 
differ. Each set of three dots represents the 
three identical components of the mask  
vector for the corresponding channel.
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but the classical EM algorithm’s performance 
was poor, with error rates typically exceeding 
50% (Fig. 4a). Across all hybrid data sets, we 
found no significant difference between the 
total error of the masked EM algorithm and 
theoretical optimal performance (P = 0.8, 
ttest), but a significant difference between 
the performance of the classical and masked 
EM algorithms (P = 0.005, ttest; Fig. 4b). To 
ensure the poor performance of the classical 
EM algorithm did not simply reflect incor
rect parameter choice, we reran it for mul
tiple values of the penalty parameter (which 
determines the number of clusters found), but 
this could not improve classical EM perform
ance. This analysis also demonstrated that the 
error rates of the masked EM algorithm were 
largely independent of the penalty parameter; 
using a value corresponding to the Bayesian 
information criterion seems a good option 
for penalty choice, as it led to a reasonably 
small number of clusters without compromis
ing error rates (Fig. 4c,d). We conclude that 
the performance of the masked EM algorithm 
is close to optimal for this clustering problem, 
yielding false positive and false discovery 
rates both on the order of 5%.

Manual curation
The final step of the spike sorting pipeline is manual verification 
and adjustment of cluster assignments, which are implemented in 
the program KlustaViewa. Although semiautomatic clustering pro
vides more consistency and lower error rates than fully manual spike 
sorting8, further manual corrections are typically required, such as 
merging of clusters split as a result of electrode drift, bursting or other 
reasons27–29. These waveform shifts are hard to model and correct 
mathematically, but can usually be identified by inspection of wave
forms, auto and crosscorrelograms, and cluster shapes. It is essential 
that this step be done with a minimum of human operator time, a 
particularly acute problem with the very large numbers of neurons 
recorded by large dense electrode arrays. Specifically, if N clusters 
are produced automatically, it is impractical for a human operator to 
inspect all order N2 potential merges.

We addressed this problem using a semiautomatic ‘wizard’ that 
reduces the number of potential merges to order N. The wizard works 
by presenting the operator with pairs of potentially mergeable clusters, 
ordered by a measure of pairwise cluster similarity. Because the wizard 
is used iteratively, this measure must be computable in a fraction of 

a second, even for data sets containing millions of spikes. Thus, only 
metrics based on summary statistics of each cluster, rather than indi
vidual points, are suitable. We evaluated several candidate similarity 
measures. The KullbackLeibler divergence between two Gaussian 
distributions was unsuitable as it overweighted differences in covari
ance matrix relative to differences in the mean. However, we obtained 
good performance using a single step of the masked EM algorithm 
to compute the similarity of the mean of one cluster to each of the 
others (Fig. 5a). To verify the accuracy of this measure, we simulated 
automatic clustering errors by splitting the ground truth clusters in 
the hybrid data sets into two subclusters, containing high and low
amplitude spikes. In all cases, the similarity measure correctly identi
fied the other half of the artificially split cluster (Fig. 5b).

The manual stage can take several hours of operator time, and 
human error is lowest during the start of this period. The wizard 
therefore iteratively presents the operator with decisions that can be 
made quickly, with the most important decisions presented first. The 
wizard iterates through all clusters starting with the best currently 
unsorted spikes. The remaining clusters are ordered by similarity  
to the best unsorted cluster, and the decision of whether to merge, 
split or delete each merge candidate is in turn made by the operator 
(Fig. 5c,d). Once satisfied that no more potential merges exist for 
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Figure 3 Evaluation of spike detection 
performance. (a) Waveforms of the ten donor 
cells used to test spike detection performance, 
in order of increasing peak amplitude (left to 
right). (b) Fraction of correctly detected spikes 
as a function of strong threshold θs (left), weak 
threshold θw (center) and power parameter p 
(right). Colored lines indicate performance for 
the correspondingly colored donor cell waveform 
shown in a; black line indicates mean over 
all donor cells. (c–e) Dependence of the total 
number of detected events, timing jitter and 
mask accuracy on the same three parameters.
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the currently best unsorted cluster, the operator either accepts it as 
a wellisolated neuron or rejects it as multiunit activity or noise, and 
the toplevel iteration begins again.

Although the wizard guides the operator through the decision 
process, the operator at all times has free access to all data required 
to make rapid decisions, provided by KlustaViewa’s graphical user 
interface, designed to be userfriendly and easily navigable (Fig. 6). 
Using this software, the time taken for manual curation scales linearly 
with the number of clusters, with a scaling factor that varies between 
operators and is generally about 1 min per cluster, regardless of probe 
size. This software therefore allows thorough manual curation of a 
densearray recording in a few hours.

We assessed the performance of eight human operators (five expe
rienced spike sorters, three novices) using this system (Fig. 7a). First, 
we asked whether the operators would correctly fix a misclustering 
that was produced by the masked EM algorithm in simulation of 
electrode drift (described further below). All experienced operators 
and all but one of the novices did this correctly. Second we asked how 
consistent the results of these operators would be on the same data 
set (Fig. 7b–d). We separately assessed consistency on spikes that all 
operators had identified be in good clusters, on spikes that at least one 
operator had identified to be in a good cluster, and on all remaining 
spikes. Similarity was assessed with the FowlkesMallows index31, 
which gives a score between 1 for complete agreement and 0 for  
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Figure 4 Evaluation of automatic clustering 
performance. (a) ROC curve showing the 
performance of the masked EM algorithm (blue) 
and classical EM algorithm (red) on one of the ten 
hybrid data sets; each dot represents performance 
for a different value of the penalty parameter. 
The cyan curve shows a theoretical upper bound 
for performance, the BEER measure obtained by 
cross-validated supervised learning. (b) Mean and 
s.e.m. of the total error (false discovery plus false 
positive) over all ten hybrid data sets for theoretical 
optimum (BEER measure), masked EM and classical 
EM algorithms. For each data set and measure, the 
parameter setting leading to best performance was 
used. (c) Effect of varying the penalty parameter, as 
a multiple of the Akaike information criterion (AIC), 
on the total error for both algorithms. The dotted line 
indicates the parameter value corresponding to the 
Bayes information criterion. Note that the masked 
EM algorithm performed well for all penalty values. 
(d) The number of clusters returned by the masked 
EM algorithm as a function of the penalty parameter.
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(blue arrows). After a sufficient number of 
matches have been presented, the operator  
can decide that no further potential matches 
could have come from the same neuron and 
either accept the best unsorted cluster as a 
well-isolated neuron or delete it as multiunit 
activity or noise. The wizard then finds the  
next best unsorted cluster to present to the 
operator (orange arrows).
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complete disagreement. For all operators 
apart from one of the novices, consistency 
was extremely high for those spikes identified 
as valid by at least one operator (Fig. 7e,f); 
nevertheless, the judgment of whether a cluster should be consid
ered wellisolated varied between operators (Fig. 7g). We conclude 
that experienced operators are likely to make accurate and consistent 

judgments on cluster merging identification, but that the judgment on 
which clusters to term valid is inconsistent. We therefore recommend 
that quantitative metrics32,33 be used to determine isolation quality.

Additional tests
We used the system described above to answer several more questions 
regarding the process of spike sorting and the design of electrodes.

First, we used our simulated ground truth data set to ask how spike 
sorting performance would change for different electrode designs. 
We considered two cases. In the first (‘site thinning’; Supplementary 
Figs. 1 and 2), the electrode was made less dense by omitting alternat
ing channels on both sides. We evaluated the performance of spike 
detection and clustering using the same hybrid spikes described ear
lier, but only on this subset of channels. The adjacency graph was 
modified to join any two channels that both connected to a missing 
channel. Spike detection was strongly affected, with correct detection 
rates dropping to an average of below 80% (Supplementary Fig. 1). 
Clustering performance was also impaired, as assessed both by the 
theoretical optimum and by the masked EM algorithm. While some 
cells (typically those found on multiple channels) saw little decrease in 
clustering performance, others were strongly affected by both metrics 
(Supplementary Fig. 2). We conclude that performance in rat cortex 
decreases substantially for site spacing larger than the 40µm same
side site spacing of these test probes.

Next we simulated removing one side of the probe (Supplementary 
Figs. 3 and 4). Of the ten hybrid cells analyzed, six were detectable 
on only one of the probe’s two sides, while the other four could be 

Figure 6 Screenshot of the KlustaViewa 
graphical user interface. In making the 
decisions presented by the wizard, the 
operator has access to information including 
waveforms (center panel; gray waveforms 
correspond to masked channels), principal 
component features (top right), auto- and 
cross-correlograms (bottom right) and an 
automatically computed similarity metric for 
each pair of clusters (inset). To enable rapid 
navigation, all views are integrated; for example, 
clicking on a particular channel in the waveform 
view will update other views to show the 
selected channels or clusters.
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Figure 7 Consistency of manual curation across operators.  
(a) Performance of eight human operators (five experts, three novices)  
on a drifty hybrid cell requiring manual curation (see Supplementary 
Figure 13b). A tick indicates correct merging of the split hybrid cell;  
a cross indicates this merge was not performed. (b–d) Consistency  
of assignments of multiple operators over all cells in this data set.  
Each submatrix shows the conditional probability of the first operator’s 
cluster assignments given the assignments of the second operator  
(color scale at bottom of d). (b) Consistency of cluster assignments  
for spikes marked as well-isolated by all operators. (c) Consistency of 
cluster assignments for spikes marked as well-isolated by at least one 
operator. (d) Consistency of whether spikes were marked as well-isolated 
by different operators. (e–g) Operator consistency for the analyses  
in b–d was quantified using the Fowlkes-Mallows index, for which  
1 represents complete agreement and 0 complete disagreement.  
While cluster assignments were highly consistent between all expert 
operators, the operators were often inconsistent in their judgments of 
which units were well-isolated.
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detected on both sides to a greater or lesser extent (Supplementary 
Table 1). The effect of side removal was different from that of site 
thinning. The performance of each unit’s preferred side was compa
rable to that of the full probe. However, for the four units that were 
visible on both sides of the probe, performance on the unpreferred 
side was substantially worse than performance on the full probe, as 
assessed both by theoretical optimum performance and the actual 
results of the masked EM algorithm. We conclude that, in staggered 
probes, the probe’s two sides function largely independently: the 
primary benefit of twosided shanks is not to increase the isolation 
quality of a cell already well isolated on one side of the probe, but to 
record from more units.

Next we asked whether similar performance to that seen in neo
cortex could also be obtained in other brain structures and species. We 
first generated five more hybrid cells using tensite recordings from 
the CA1 area of rat hippocampus (Supplementary Figs. 5 and 6).  
Good performance was again obtained; furthermore, the spike detec
tion parameters found to be optimal in cortical data were also optimal 
in CA1 data. We then ran the same code on highcount data collected 
from a wider range of preparations: V1 of awake mouse and awake 
macaque monkey (Supplementary Figs. 7–9) and LGN thalamus of 
anesthetized marmoset (Supplementary Fig. 10). Additional confi
dence in the method was provided both by further analyses of hybrid 
data (Supplementary Fig. 11) and by the observation of sharp orien
tationtuned responses (Supplementary Fig. 7c–l), including among 
cells of apparently similar waveforms that were nevertheless separated 
by the spike sorting procedure (Supplementary Fig. 7m).

We then asked how well the system would handle nonstationarity 
in spike amplitudes. Such nonstationarity can occur both because of 
electrode drift and also because of activityrelated changes in spike 
amplitude such as that after bursts or prolonged periods of firing27. 
Examination of data from acute recordings (where electrode drift is 
often stronger than with chronic probes) showed that the algorithm 
often tracked drift successfully, but in other cases split the spikes of 
a single ‘drifty’ cell into multiple clusters requiring manual merging 
(Supplementary Fig. 12).

To simulate nonstationarity, we constructed six hybrid data sets 
in which spike amplitude drifted throughout the recording as a 
geometric random walk (Supplementary Fig. 13). Spike detec
tion was hardly affected by this nonstationarity (Supplementary 
Fig. 14). For clustering, only one of the six drifty hybrid data sets 
required manual curation, and once this was performed, accuracy 
of the masked EM algorithm was comparable to the theoretical opti
mum (Supplementary Fig. 15). A different type of nonstationarity, 
in which the hybrid cell simply stopped firing halfway through the 
recording, also had no effects on performance (P = 0.75; twosample  
ttest on total errors; Supplementary Fig. 16). As an important 
task is often to track cells between recordings made over multiple 
days—that is, where drift occurs in nonrecorded periods—we also 
asked whether the wizard’s similarity metric might be used for this 
purpose. Although ground truth data were not available, a conserva
tive criterion gave encouraging results, as indicated by the similari
ties of the autocorrelograms of the units associated to each other 
(Supplementary Fig. 17).

A strategy sometimes used to deal with nonstationarity is to include 
time as an additional feature in the cluster analysis algorithm, in prin
ciple allowing the algorithm to track slow changes in amplitude. To 
our surprise, we found that this actually worsened clustering perform
ance, and this worsening could not always be overcome by manual 
curation (Supplementary Fig. 15). We conclude that nonstationarity 
(at least of the type modeled here) does not present a serious problem 

to automatic sorting performance if time is not added as an additional 
feature and if manual curation is performed when required.

DISCUSSION
We have produced a software suite for spike sorting of data from 
large, dense electrode arrays. Analysis of simulated groundtruth 
data indicated that error rates of this approach were frequently of 
the order 5%.

A critical step in this system, and all others currently in wide use 
for in vivo data, is manual curation. Extracellular array recordings  
are subject to many sources of error, including electrode drift,  
overlapping spikes and the fact that neuronal spike waveforms are 
not constant but change according to firing patterns including but 
not limited to bursting27–29. While most working neurophysiolo
gists have a good understanding of these potential artifacts, formal
izing this knowledge into a reliable mathematical model has proven  
challenging. Because spike sorting errors could lead to erroneous 
scientific conclusions29, it remains essential that a scientist is able to 
inspect the results produced by an automatic algorithm, then correct 
or discard its results. We found that experienced operators tended 
to make similar judgments during the manual curation process, but 
that their judgments of which units were wellisolated were subjec
tive. Fortunately, quantitative criteria exist for assessing the quality of 
unit isolation32,33, and we therefore recommend that these be used, 
rather than human judgments, when deciding which cells to include 
in further scientific analysis.

The performance of the system is sufficient for practical analysis 
of data produced by current commercially available silicon probes. 
Nevertheless, there remain areas for further improvement. The first of 
these concerns execution time. KlustaKwik is several orders of magni
tude faster than standard mixtureofGaussians fitting; nevertheless, 
when running on large data sets, it can take hours or even days to 
complete on a standard singleprocessor machine. Hardware accelera
tion such as GPUs34 or cloud computing35 may speed up this analysis 
stage, as may alternative cluster analysis algorithms that exclude the 
most computationally expensive step of covariance matrix estima
tion (for example, refs. 36,37). Faster versions of the code presented 
here, now under development, will be available at https://github.com/ 
kwikteam/klustakwik2/ and https://github.com/kwikteam/phy/.  
A second opportunity for improvement regards the detection of spatio
temporally overlapping spikes. While the current algorithm can detect 
the majority of temporally overlapping spikes, which occur on distinct 
sets of channels, it cannot resolve spikes that overlap in both space 
and time. Templatematching algorithms have solved this problem in 
the case of in vitro retinal array data38,39, but these data are much less 
noisy than in vivo brain recordings. While recent research suggests 
that certain forms of template matching may succeed, at least for  
tetrode data in vivo18,21, such methods are not at present widely 
applied to in vivo recordings, and many challenges remain to be 
overcome, most critically regarding the manual curation step. The 
platform we have described here constitutes both a practical solution 
to today’s spike sorting challenges and also a framework from which 
to develop solutions for future generations of electrodes containing 
thousands of channels.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Test data. To test the algorithm, we created simulated ground truth data using 
a method termed hybrid data sets. The primary raw data used to construct  
this ground truth (shown in the main text figures) consisted of two separate 
recordings from somatosensory cortex (−3.8 mm from bregma, 3 mm lateral  
to midline, 1 mm depth) of sleeping adult rats, using silicon probes with  
32 nonactivated platinumplated recording sites of size 10 × 16 µm arranged 
in a staggered shank configuration (vertical spacing 20 µm between adjacent 
sites on opposite sides of the shank, 40 µm between adjacent sites on the same 
side), mounted on a homemade microdrive. Ground and reference electrodes 
were stainless steel screws over the cerebellum. Data were continuously recorded 
wideband (1 HzNyquist) at a sampling rate of 20 kHz. During the recording 
session, the signals were amplified (1000×), bandpass filtered (1 to 5,000 Hz),  
and acquired continuously at 20 kHz on a 128channel DataMax system  
(16bit resolution; RC Electronics). All protocols were approved by the 
Institutional Animal Care and Use Committee of Rutgers University.

To perform additional tests (Supplementary Figs. 5–12), we analyzed data 
collected in additional brain structures and species. Data were collected from the 
septal third of hippocampal CA1 region in male rats using tensite silicon probes 
using the same methods as above. All protocols were approved by the Institutional 
Animal Care and Use Committee of Rutgers University. To obtain recordings in 
mouse V1, mice were implanted with a custombuilt head post and recording 
chamber (4 mm inner diameter) under isoflurane anesthesia. After several days 
acclimatization to headfixation, animals were anesthetized under isoflurane and 
a ~1 mm craniotomy was performed over area V1 1 d before the first recording 
(see refs. 40,41 for further details). Data were recorded with an acutely inserted 
32site Neuronexus Edge probe (20 µm spacing). Experiments were conducted 
according to the UK Animals (Scientific Procedures) Act, 1986 under personal 
and project licenses issued by the Home Office following ethical review. Non
chronic recordings were obtained from cortical area V1 of two awake, behav
ing, adult male rhesus monkeys (Macaca mulatta) using Neuronexus Poly2 and 
customdesigned Edge (60 micron spacing) Vector probes. Animals were first 
implanted with scleral search coils and fit with a custombuilt titanium head post 
and recording chamber (see refs. 42,43 for details). Subsequently, a 2 to 3mm
diameter trephination was performed through which daily penetrations would be 
made. Data were acquired as broadband signals (0.5–16 kHz, sampled at 32 kHz), 
digitized at 24 bits using PXI4498 cards (National Instruments, Austin, TX).  
All procedures were conducted in accordance with the ethical guidelines of 
the National Institutes of Health and were approved by the Baylor College of 
Medicine IACUC. To obtain recordings from the dorsal lateral geniculate nucleus 
(LGN) of a sufentanilanesthetized adult male marmoset monkey (Callithrix  
jacchus), a craniotomy was made over the right LGN and a Neuronexus A16x2 
probe (500 µm probe separation, 50 µm spacing between contact points on each 
shank) was lowered into LGN and allowed to settle for at least 30 min before 
recording. Data were bandpass filtered (0.3–5 kHz, sampled at 24 kHz), and 
digitized by a TuckerDavis Technologies RZ2 real time processor (see ref. 44 for 
details). All procedures were approved by the University of Sydney Animal Ethics 
Committee and conform to Australian National Health and Medical Research 
Council (NHMRC) policies on the use of animals in neuroscience research.

Hybrid data sets. To create the hybrid data sets, we first completed a full spike 
sorting of each data set, including manual verification. Five clusters were chosen 
from each data set, corresponding to neurons spanning the range of amplitudes 
and channel distributions observed in the data (Fig. 3a). The mean unfiltered 
waveform of each neuron was computed, its mean was subtracted and its value 
at each end was set to exactly zero by tapering with a Hamming function. These 
‘donor waveforms’ were added at prescribed times to the raw unfiltered data of the 
other, ‘acceptor’ recording. To simulate amplitude variability, we linearly scaled 
each added waveform by a random factor chosen from the range [ , ]2 2 2  caus
ing amplitudes to vary by a factor of two, which suffices to capture the variability 
typical of bursting neurons27. The interspike intervals typical of bursting neurons 
were not simulated, as this does not affect the spike detection or clustering proc
ess; instead, hybrid spikes were added regularly at rates in the range 2–4 spikes 
per second. To ensure that the simulated data tested the ability of our software to 
realign spikes to subsample resolution, each added spike was shifted by a random 
subsample offset using cubic spline interpolation. For simulations of drifty cells, 

amplitude was as geometric random walk (that is, the exponential of a Brownian 
random walk), which was then normalized so that the mean amplitude remained 
the same as its nondrifty counterpart.

File format. To implement the software, we designed an HDF5based file format 
to store raw data, intermediate analysis results (such as extracted spike waveforms 
and feature vectors), and final data such as spike times and cluster assignments45. 
The format makes use of HDF5 links to allow a single, small file (the .kwik file) 
containing all data required for scientific analysis (for example, spike times, clus
ter assignments, unit isolation quality measures). Bulky raw data and intermediate 
processing steps such as feature vectors are stored in separate files (the .kwd and 
.kwx files). This ‘detachable’ format is designed for data sharing applications, 
allowing users to download as much data as required for their needs. A full speci
fication of the format can be found at http://phy.cortexlab.net/format/.

Spikedetekt. Spike detection was implemented by SpikeDetekt, a custom pro
gram written in Python 2.7 using the packages NumPy, SciPy and PyTables.

The first step of the program is to filter the raw voltage trace data to remove 
the lowfrequency local field potential. This is achieved with a thirdorder 
Butterworth filter used in the forwardbackward mode to ensure zero phase  
distortion. Filter parameters can be specified by the user; for the analyses 
described here, we used a bandpass filter of 500 Hz to 0.95 × Nyquist.

The second step is threshold determination. Spike detection thresholds  
are specified as multiples of the s.d. of the filtered signal; at the option of the  
user, a single threshold is used for all channels to avoid emphasizing noise  
from lowamplitude channels. To boost execution speed while minimizing  
the chance of biased estimates, the s.d. is estimated from five data chunks of 
length 1 s each, picked randomly from throughout the recording. The s.d. is 
computed with a robust estimator, median(|V|)/0.6745, to avoid contamination 
by spike waveforms.

The next step is spike detection. The spike detection code operates on  
consecutive chunks of data (1 s length) for memory efficiency. Spatiotemporally 
connected regions of weak threshold crossing are detected using a nonrecursive 
flood fill algorithm, with spatial continuity defined using a userspecified adja
cency graph. Only connected components for which at least one point exceeds 
the strong threshold are kept for further analysis.

Spike alignment is computed on the basis of a scaled and clipped transforma
tion of the filtered voltage V(t,c): 

y
q

q q
( , ) min

( , )
,t c

V t c w

s w
=

− −
−







1

Note that ψ(t,c) can never be negative within a spike, as the flood fill algorithm 
only finds points for which −V(t,c) > θw.  The center time for each spike S is 
computed as 
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where (t, c) ∈ S denotes the set of times and channels, for all points assigned to 
this spike by the flood fill algorithm. If p = 1, this formula measures the spike’s 
center of mass; if p = , it measures the time of the spike peak.

Spikes were realigned on tS  to subsample resolution using cubic spline  
interpolation (note that the center time will, in general, not be an integral 
number of samples). Feature vectors are computed for each channel separately by  
principal component analysis; the number of features per channel is a user 
settable parameter, with default value 3. Finally, mask vectors are computed for 
each spike S as zero for channels not appearing in the connected component and 
as the maximum scaled waveform for all channels inside the component: 
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t t c S

,
:( , )
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To evaluate the performance of SpikeDetekt required identifying which 
detected spikes correspond to ground truth spikes. This was done with a dual 
criterion: the difference between the detected time and ground truth needed  
to be less than 2 samples, and the detected mask vector mS needed to have a 
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similarity to the ground truth mask vector mg of at least 0.8, defined by the mask 
similarity measure 

m m
m m
S G

S G

⋅

Note that mask similarity cannot exceed 1, by the CauchySchwartz inequality. 
The validity of this criterion was verified by showing that detected spike timing 
jitter rapidly increased for similarity threshold for values less than 0.8, but was 
insensitive to threshold value above 0.8. Once the detected spikes correspond
ing to ground truth had been identified, the four measures in Figure 3 were 
computed. This analysis used the Python library Joblib (C. Varoquaux; https://
pythonhosted.org/joblib/) to prevent unnecessary recomputation.

klustakwik. Automatic clustering was performed by KlustaKwik, a custom pro
gram written in C++. The first version of this program was designed for tetrode 
data, implemented a hard EM algorithm for maximumlikelihood fitting of a 
mixture of arbitrarycovariance Gaussians, and was released in 2000 but not spe
cifically described in a published manuscript. Here we have implemented several 
modifications of this software to enable automatic sorting of highcount probe 
data. The program now implements a new masked EM algorithm30 designed for 
highdimensional classification, as well as other features such as cache optimiza
tion resulting in a speed increase of over 10,000%.

The masked EM algorithm takes as input both feature vectors and mask vec
tors. It works by fitting a mixture of Gaussians to a virtual data set in which each 
feature vector is replaced by a probability distribution: 

x
x m

N mn S
n S n S

n S n S
,

, ,

,
~

( , )

prob

probn s2 1 −







Here xn,S represents the nth component of the feature vector for spike S, mn,S rep
resents the nth component of the mask vector for spike S, and N n S( , )n s2  denotes 
a univariate Gaussian distribution with mean and variance equal to those of the 
subthreshold noise distribution of the nth feature.

The masked EM algorithm consists of alternation of an E step, in which each 
spike is assigned to the cluster for which it has highest posterior probability, and 
an M step in which the means and covariances of each cluster are estimated. 
We have derived analytic formulas for the expectation of the cluster assignment 
probability used in the E step and the cluster mean and variance used in the M 
step over the virtual probability distribution xn i,  (ref. 30). Thus, explicit sampling 
from the virtual distribution does not need to be performed; furthermore, these 
expectations can be computed much faster than those of the full EM algorithm, 
as they scale with the square of the number of unmasked features rather than the 
square of the total number of features.

KlustaKwik automatically determines the number of clusters that best fit the 
data, determined using a penalty function that encodes a preference for fits with 
smaller numbers of clusters. We have found that a modification of the Bayesian 
information criterion to deal with masked data works well in practice30. Because 
the algorithm allows dynamic splitting and merging of clusters during the fitting 
process, a search for the optimal number of clusters can be achieved in a single 
run of the algorithm. We have found that starting the algorithm from an initial 
clustering determined heuristically from the mask vectors avoids the problem of 
local maxima and allows good results to be obtained from a single run.

klustaViewa. Manual correction of automatic clustering is performed with 
KlustaViewa, a custom program written in Python 2.7. The manual stage requires 
interactive visualization of very large numbers of data points, for which existing 
libraries such as matplotlib were not suitable. We therefore designed a new Python 
library for rapid interactive data visualization, named Galry46. Galry leverages  
the computational power of modern graphics processing units34 through  
the OpenGL graphics library47. High performance is achieved by porting most 
visualization computations to the GPU using custom shaders and by minimizing 
the number of OpenGL API calls through batchrendering techniques.

To ensure rapid adoption by the experimental community, we designed 
KlustaViewa’s user interface by integrating new features necessary for highcount 
probes into a user interface as similar as possible to existing manual spike sorting 
environments such as Klusters13. In addition to data views familiar from previous  
spike sorting systems (such as waveform, auto and crosscorrelograms, and 
similarity matrix), we implemented several new features. The most important of 
these is the wizard (described in the main text), which automatically leads the user 
through the manual verification and merging process while always allowing the 
user free access to all of the views familiar from standard spike sorting systems. 
In addition, a number of enhancements were designed specifically to make the 
sorting of highcount probe data tractable. These include features to allow display 
of masking information, rapid and automatic display of the channels relevant to 
selected clusters, transient color brushing48, and automatic downsampling to 
ensure low latency display when dealing with very large data sets.

The wizard is based on a metric of similarity for each pair of clusters. This 
was computed by running a single step from the EM algorithm to compute the 
posterior probability for assigning the mean of cluster i to cluster j: 
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Here wj represents the weight of cluster j (that is, the fraction of points already 
assigned to this cluster); µj and Cj represent its mean and covariance as computed 
by the M step of the masked EM algorithm. The quality of each cluster j was 
defined as the diagonal element pjj; that is, the posterior probability for classify
ing cluster j’s mean as coming from cluster j itself. A high value for pjj therefore 
indicates that cluster j has no close neighbors.

The difference between two clusterings C,C′, consisting of K and K′  
clusters, respectively, and confusion matrix entries nkk′ were measured using  
the FowlkesMallows31 index WW1 2 , where 
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W1 is the probability that a pair of points that are in the same cluster under 
the clustering C is also in the same cluster in C′. W2 is the same with the two 
clusterings interchanged. The FowlkesMallows index symmetrizes these two 
asymmetric quantities by taking their geometric mean.

A Supplementary methods checklist is available.
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